首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   86篇
  861篇
  2023年   2篇
  2022年   17篇
  2021年   21篇
  2020年   6篇
  2019年   21篇
  2018年   21篇
  2017年   9篇
  2016年   34篇
  2015年   37篇
  2014年   41篇
  2013年   53篇
  2012年   72篇
  2011年   60篇
  2010年   45篇
  2009年   37篇
  2008年   50篇
  2007年   45篇
  2006年   45篇
  2005年   36篇
  2004年   39篇
  2003年   32篇
  2002年   31篇
  2001年   16篇
  2000年   3篇
  1999年   7篇
  1998年   14篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有861条查询结果,搜索用时 15 毫秒
81.
Tamar Keasar  Eric Wajnberg 《Oikos》2019,128(3):347-359
Polyembryony involves the production of several genetically identical progeny from a single egg through clonal division. Although polyembryonic development allows highly efficient reproduction, especially in some parasitoid wasps, it is far less common than monoembryony (development of one embryo per egg). To understand what might constrain the evolutionary success of polyembryony in parasitoids, we developed Monte Carlo models that simulate the competition between polyembryonic females and their monoembryonic counterparts. We investigated which simulated life‐history traits of the females allow the monoembryonic mode of development to succeed. Published empirical studies were surveyed to explore whether these traits indeed differ between polyembryonic parasitoids and related monoembryonic species. The simulations predict an advantage to monoembryony in parasitoids whose reproduction is limited by host availability rather than by egg supply, and that parasitize small‐bodied hosts. Comparative data on the parasitoid families Encyrtidae and (to a lesser extent) Braconidae, but not the data from Platygastridae, circumstantially support these predictions. The model also predicts monoembryony to outcompete polyembryony when: 1) hosts vary considerably in quality, 2) polyembryonic development carries high physiological costs, and 3) monoembryonic females make optimal clutch size decisions upon attacking hosts. These multiple constraints may account for the rarity of polyembryony among parasitoid species.  相似文献   
82.
The objective of this study was to determine whether Toll-like receptor 4 (TLR4) has a role in alcohol-mediated acetaminophen (APAP) hepatotoxicity. TLR4 is involved in the inflammatory response to endotoxin. Others have found that ethanol-mediated liver disease is decreased in C3H/HeJ mice, which have a mutated TLR4 resulting in a decreased response to endotoxin compared with endotoxin-responsive mice. In the present study, short-term (1 wk) pretreatment with ethanol plus isopentanol, the predominant alcohols in alcoholic beverages, caused no histologically observed liver damage in either C3H/HeJ mice or endotoxin-responsive C3H/HeN mice, despite an increase in nitrotyrosine levels in the livers of C3H/HeN mice. In C3H/HeN mice pretreated with the alcohols, subsequent exposure to APAP caused a transient decrease in liver nitrotyrosine formation, possibly due to competitive interaction of peroxynitrite with APAP producing 3-nitroacetaminophen. Treatment with APAP alone resulted in steatosis in addition to congestion and necrosis in both C3H/HeN and C3H/HeJ mice, but the effects were more severe in endotoxin-responsive C3H/HeN mice. In alcohol-pretreated endotoxin-responsive C3H/HeN mice, subsequent exposure to APAP resulted in further increases in liver damage, including severe steatosis, associated with elevated plasma levels of TNF-alpha. In contrast, alcohol pretreatment of C3H/HeJ mice caused little to no increase in APAP hepatotoxicity and no increase in plasma TNF-alpha. Portal blood endotoxin levels were very low and were not detectably elevated by any of the treatments. In conclusion, this study implicates a role of TLR4 in APAP-mediated hepatotoxicity.  相似文献   
83.
The reduction of ionic mercury to elemental mercury by the mercuric reductase (MerA) enzyme plays an important role in the biogeochemical cycling of mercury in contaminated environments by partitioning mercury to the atmosphere. This activity, common in aerobic environments, has rarely been examined in anoxic sediments where production of highly toxic methylmercury occurs. Novel degenerate PCR primers were developed which span the known diversity of merA genes in Gram-negative bacteria and amplify a 285 bp fragment at the 3' end of merA. These primers were used to create a clone library and to analyse merA diversity in an anaerobic sediment enrichment collected from a mercury-contaminated site in the Meadowlands, New Jersey. A total of 174 sequences were analysed, representing 71 merA phylotypes and four novel MerA clades. This first examination of merA diversity in anoxic environments suggests an untapped resource for novel merA sequences.  相似文献   
84.
Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk for several neurodegenerative diseases including Alzheimer's disease and frontotemporal dementia (FTD). Homozygous TREM2 missense mutations, such as p.T66M, lead to the FTD‐like syndrome, but how they cause pathology is unknown. Using CRISPR/Cas9 genome editing, we generated a knock‐in mouse model for the disease‐associated Trem2 p.T66M mutation. Consistent with a loss‐of‐function mutation, we observe an intracellular accumulation of immature mutant Trem2 and reduced generation of soluble Trem2 similar to patients with the homozygous p.T66M mutation. Trem2 p.T66M knock‐in mice show delayed resolution of inflammation upon in vivo lipopolysaccharide stimulation and cultured macrophages display significantly reduced phagocytic activity. Immunohistochemistry together with in vivo TSPO small animal positron emission tomography (μPET) demonstrates an age‐dependent reduction in microglial activity. Surprisingly, perfusion magnetic resonance imaging and FDG‐μPET imaging reveal a significant reduction in cerebral blood flow and brain glucose metabolism. Thus, we demonstrate that a TREM2 loss‐of‐function mutation causes brain‐wide metabolic alterations pointing toward a possible function of microglia in regulating brain glucose metabolism.  相似文献   
85.
Heterotrimeric G-proteins relay signals between membrane-bound receptors and downstream effectors. Little is known, however, about the regulation of Galpha subunit localization within the natural endogenous environment of a specialized signaling cell. Here we show, using live Drosophila flies, that light causes massive and reversible translocation of the visual Gqalpha to the cytosol, associated with marked architectural changes in the signaling compartment. Molecular genetic dissection together with detailed kinetic analysis enabled us to characterize the translocation cycle and to unravel how signaling molecules that interact with Gqalpha affect these processes. Epistatic analysis showed that Gqalpha is necessary but not sufficient to bring about the morphological changes in the signaling organelle. Furthermore, mutant analysis indicated that Gqbeta is essential for targeting of Gqalpha to the membrane and suggested that Gqbeta is also needed for efficient activation of Gqalpha by rhodopsin. Our results support the 'two-signal model' hypothesis for membrane targeting in a living organism and characterize the regulation of both the activity-dependent Gq localization and the cellular architectural changes in Drosophila photoreceptors.  相似文献   
86.
There are infinitely many different combinations of arm postures which will place the hand at the same point in space. Given this abundance, how is one configuration chosen over another? Two main hypotheses have been proposed to solve this problem. Postural models suggest that the posture adopted is purely determined by the desired hand position (known as Donders' law). Transport models suggest that the adopted posture depends on where the hand has moved from. A specific transport model, the minimum work model, has been proposed in which the adopted posture is the one that minimizes the amount of work required to move the hand to the new location. The postural model predicts that the posture will be independent of where the hand has moved from, whereas the transport models predict that the posture will depend on the previous posture. We have devised a simple redundant task-touching a target bar using a hand-held virtual stick-to examine these models. The results show that neither model alone can account for the data. We propose a control planning strategy in which there is a combined cost function that has both a postural term as well as a transport term.  相似文献   
87.
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. The HTLV-1 transactivator, Tax, is implicated as the viral oncoprotein. Na?ve cells expressing Tax for the first time develop severe cell cycle abnormalities that include increased DNA synthesis, mitotic arrest, appearance of convoluted nuclei with decondensed DNA, and formation of multinucleated cells. Here we report that Tax causes a drastic reduction in Pds1p/securin and Clb2p/cyclin B levels in yeast, rodent, and human cells and a loss of cell viability. With a temperature-sensitive mutant of the CDC23 subunit of the anaphase-promoting complex (APC), cdc23(ts); a temperature-sensitive mutant of cdc20; and a cdh1-null mutant, we show that the diminution of Pds1p and Clb2p brought on by Tax is mediated via the Cdc20p-associated anaphase-promoting complex, APC(Cdc20p). This loss of Pds1p/securin and Clb2p/cyclin B1 occurred before cellular entry into mitosis, caused a G(2)/M cell cycle block, and was accompanied by severe chromosome aneuploidy in both Saccharomyces cerevisiae cells and human diploid fibroblasts. Our results support the notion that Tax aberrantly targets and activates APC(Cdc20p), leading to unscheduled degradation of Pds1p/securin and Clb2p/cyclin B1, a delay or failure in mitotic entry and progression, and faulty chromosome transmission. The chromosomal instability resulting from a Tax-induced deficiency in securin and cyclin B1 provides an explanation for the highly aneuploid nature of adult T-cell leukemia cells.  相似文献   
88.
The anti-Parkinson, selective irreversible monoamine oxidase B inhibitor drug, rasagiline (Azilect), recently approved by the US Food and Drug Administration, has been shown to possess neuroprotective-neurorescue activities in in vitro and in vivo models. Recent preliminary studies indicated the potential neuroprotective effect of the major metabolite of rasagiline, 1-(R)-aminoindan. In the current study, the neuroprotective properties of 1-(R)-aminoindan were assessed employing a cytotoxic model of human neuroblastoma SK-N-SH cells in high-density culture-induced neuronal death. We show that aminoindan (0.1-1 mumol/L) significantly reduced the apoptosis-associated phosphorylated protein, H2A.X (Ser139), decreased the cleavage of caspase 9 and caspase 3, while increasing the anti-apoptotic proteins, Bcl-2 and Bcl-xl. Protein kinase C (PKC) inhibitor, GF109203X, prevented the neuroprotection, indicating the involvement of PKC in aminoindan-induced cell survival. Aminoindan markedly elevated pPKC(pan) and specifically that of the pro-survival PKC isoform, PKCepsilon. Additionally, hydroxyaminoindan, a metabolite of a novel bifunctional drug, ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], combining cholinesterase and monoamine oxidase inhibitor activity, exerted similar neuroprotective properties. Aminoindan and hydroxyaminoindan also protected rat pheochromacytoma PC-12 cells against the neurotoxin, 6-hydroxydopamine. Our findings suggest that both metabolites may contribute to the overall neuroprotective activity of their respective parent compounds, further implicating rasagiline and ladostigil as potentially valuable drugs for treatment of a wide variety of neurodegenerative disorders of aging.  相似文献   
89.
New concepts and computational models that integrate behavioral and neurophysiological observations have addressed several of the most fundamental long-standing problems in motor control. These problems include the selection of particular trajectories among the large number of possibilities, the solution of inverse kinematics and dynamics problems, motor adaptation and the learning of sequential behaviors.  相似文献   
90.
To elucidate how human DNA polymerase β (pol β) discriminates dATP from dCTP when processing 8-oxoguanine (8-oxoG), we analyze a series of dynamics simulations before and after the chemical step with dATP and dCTP opposite an 8-oxoG template started from partially open complexes of pol β. Analyses reveal that the thumb closing of pol β before chemistry is hampered when the incorrect nucleotide dATP is bound opposite 8-oxoG; the unfavorable interaction between active-site residue Tyr271 and dATP that causes an anti to syn change in the 8-oxoG (syn):dATP complex explains this slow motion, in contrast to the 8-oxoG (anti):dCTP system. Such differences in conformational pathways before chemistry for mismatched versus matched complexes help explain the preference for correct insertion across 8-oxoG by pol β. Together with reference studies with a nonlesioned G template, we propose that 8-oxoG leads to lower efficiency in pol β's incorporation of dCTP compared with G by affecting the requisite active-site geometry for the chemical reaction before chemistry. Furthermore, because the active site is far from ready for the chemical reaction after partial closing or even full thumb closing, we suggest that pol β is tightly controlled not only by the chemical step but also by a closely related requirement for subtle active-site rearrangements after thumb movement but before chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号