首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5162篇
  免费   626篇
  国内免费   2篇
  5790篇
  2021年   51篇
  2018年   63篇
  2017年   51篇
  2016年   87篇
  2015年   153篇
  2014年   159篇
  2013年   200篇
  2012年   222篇
  2011年   236篇
  2010年   146篇
  2009年   129篇
  2008年   182篇
  2007年   162篇
  2006年   180篇
  2005年   154篇
  2004年   149篇
  2003年   123篇
  2002年   184篇
  2001年   171篇
  2000年   159篇
  1999年   148篇
  1998年   68篇
  1997年   44篇
  1996年   61篇
  1995年   82篇
  1994年   60篇
  1993年   72篇
  1992年   134篇
  1991年   116篇
  1990年   137篇
  1989年   98篇
  1988年   119篇
  1987年   109篇
  1986年   90篇
  1985年   99篇
  1984年   81篇
  1983年   73篇
  1982年   77篇
  1981年   73篇
  1980年   67篇
  1979年   95篇
  1978年   91篇
  1977年   69篇
  1976年   64篇
  1975年   56篇
  1973年   49篇
  1972年   58篇
  1971年   50篇
  1968年   40篇
  1967年   43篇
排序方式: 共有5790条查询结果,搜索用时 10 毫秒
991.
Toll‐like receptor 4 (TLR4) is responsible for the immediate response to Gram‐negative bacteria and signals via two main pathways by recruitment of distinct pairs of adaptor proteins. Mal‐MyD88 [Mal (MyD88‐adaptor‐like) ‐ MYD88 (Myeloid differentiation primary response gene (88))] is recruited to the plasma membrane to initiate the signaling cascade leading to production of pro‐inflammatory cytokines while TRAM‐TRIF [TRAM (TRIF‐related adaptor molecule)‐TRIF (TIR‐domain‐containing adapter‐inducing interferon‐β)] is recruited to early endosomes to initiate the subsequent production of type I interferons. We have investigated the dynamics of TLR4 and TRAM during lipopolysaccharide (LPS) stimulation. We found that LPS induced a CD14‐dependent immobile fraction of TLR4 in the plasma membrane. Total internal reflection fluorescence microscopy (TIRF) revealed that LPS stimulation induced clustering of TLR4 into small punctate structures in the plasma membrane containing CD14/LPS and clathrin, both in HEK293 cells and the macrophage model cell line U373‐CD14. These results suggest that laterally immobilized TLR4 receptor complexes are being formed and prepared for endocytosis. RAB11A was found to be involved in localizing TRAM to the endocytic recycling compartment (ERC) and to early sorting endosomes. Moreover, CD14/LPS but not TRAM was immobilized on RAB11A‐positive endosomes, which indicates that TRAM and CD14/LPS can independently be recruited to endosomes.   相似文献   
992.
Adult susceptible mice (DBA/2J) infected with MPSV (myeloproliferative sarcoma virus), a defective RNA tumour virus, develop splenomegaly and progressive disruption of the haematologic system culminating in death. The present study was specifically directed toward determining the effects of the virus on erythroid differentiation. Early and late precursor cells (erythroid burst-forming units; BFU-E and colony-forming units; CFU-E, respectively) were evaluated by the ability of bone marrow and spleen cells to form colonies of fully differentiated erythroid cells in vitro. MPSV caused substantial modification of both the BFU-E and CFU-E populations in the bone marrow and spleen of infected animals. Changes were detected in the CFU-E population preceding any significant increase in spleen weight. In the bone marrow, the proportion of CFU-E cells increased almost twofold by days 5-10 after virus infection but decreased by day 15. In the spleen, CFU-E frequency rose 40-fold by days 10-15 and then declined steadily prior to death. At the peak of CFU-E expansion, a small proportion of the population appeared to be erythropoietin (Ep) independent, although there was no evidence of a complete switch to Ep-independence which occurs in Friend virus-induced erythroleukemia. Dose-response curves showed that none of these data could be explained in terms of a changing responsiveness to Ep. However, evidence is presented that indicates that BFU-E from MPSV-infected animals lose or have a reduced requirement for burst-promoting activity (BPA) relative to normal cells although their progeny still need Ep for terminal erythroid differentiation.  相似文献   
993.
The relative importance of neural, and some nonneural, mechanisms in the control of pineal hydroxyindole-O-methyltransferase (HIOMT) activity during development and in the adult rat was studied. In neonatal rats, guanethidine-treatment, bilateral superior cervical ganglionectomy (SCGX), or exposure to constant light did not prevent the initial appearance of HIOMT activity, indicating that neural stimulation of the gland is not essential for the development of HIOMT activity. In adult rats, decentralization or removal of the SCG led to a slow fall in HIOMT activity, to about 30% of control activity, indicating that the enzyme is largely under neural control. Additionally, adrenalectomy or hypophysectomy had no effect on HIOMT activity, refuting the suggestion that adrenal and/or gonadal steroids are of major importance in the regulation of this enzyme. The fall in activity of the enzyme after SCGX or exposure to constant light probably does not represent a shift in the Km of the enzyme nor the selective disappearance of a distinct molecular species. Similar changes in HIOMT activity and cyclic GMP responsiveness occur in response to alterations in the length of the daily dark period, adding further evidence to our earlier speculation that there may be a functional relationship between these two.  相似文献   
994.
995.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   
996.
The WI-1 adhesin is indispensable for pathogenicity of Blastomyces dermatitidis and is thought to promote pulmonary infection by fixing yeast to lung tissue and cells. Recent findings suggest that WI-1 confers pathogenicity by mechanisms in addition to adherence. Here, we investigated whether WI-1 modulates host immunity by altering production of pro-inflammatory cytokines. Production of TNF-alpha in lung alveolar fluids of mice infected with B. dermatitidis was severalfold higher for WI-1 knockout yeast compared with wild-type yeast, and in vitro coculture of unseparated lung cells with these isogenic yeast disclosed similar differences. Upon coculture with purified macrophages and neutrophils, wild-type yeast blocked TNF-alpha production, yet WI-1 knockout yeast stimulated production. Coating knockout yeast with purified WI-1 converted them from stimulating TNF-alpha production to inhibiting production. Addition of purified WI-1 into stimulated phagocyte cultures led to concentration-dependent inhibition of TNF-alpha production. Neutralization of TNF-alpha in vivo exacerbated experimental pulmonary infection, particularly for the nonpathogenic WI-1 knockout yeast. Inducing increased TNF-alpha levels in the lung by adenovirus-vectored gene therapy controlled infection with wild-type yeast. Thus, the WI-1 adhesin on yeast modulates host immunity through blocking TNF-alpha production by phagocytes, which fosters progression of pulmonary infection.  相似文献   
997.
998.
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix‐assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single‐cell resolution. Here we applied 5‐ and 10 μm high spatial resolution MALDI‐MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell‐specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1‐containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0‐containing PGs. Furthermore, PG 32:0 shows genotype‐specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. This study demonstrates the power of MALDI‐MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single‐cell resolution.  相似文献   
999.
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using F?ster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.  相似文献   
1000.
The effect of acetylene on N transformations in an acid oak-beech soil   总被引:4,自引:0,他引:4  
The effectiveness of acetylene (C2H2) as inhibitor of nitrification was studied in relation to the decomposition of C2H2. This was done by examining the effects of single and multiple additions of different C2H2 concentrations (10, 100, 1000 Pa) on mineral N and NO3 -N production in samples of the organic (FH) and upper mineral (Ah) layer of an acid oak-beech forest soil. The decomposition of C2H2 was much faster in Ah samples than in FH samples. A single addition of 10 Pa C2H2 was not sufficient for complete inhibition of nitrification in the Ah samples. Nitrification was blocked completely by all other C2H2 treatments in both FH and Ah samples. Addition of C2H2 decreased net mineral N production in Ah samples but not in FH samples. Addition of carboxymethyl-cellulose and chitin to Ah soil had no affect on the rate of decomposition of C2H2. Chitin had a negative effect on net NO3 -N production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号