首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11314篇
  免费   887篇
  国内免费   7篇
  2022年   76篇
  2021年   183篇
  2020年   124篇
  2019年   147篇
  2018年   170篇
  2017年   165篇
  2016年   252篇
  2015年   434篇
  2014年   506篇
  2013年   624篇
  2012年   743篇
  2011年   667篇
  2010年   474篇
  2009年   416篇
  2008年   599篇
  2007年   605篇
  2006年   562篇
  2005年   527篇
  2004年   550篇
  2003年   523篇
  2002年   545篇
  2001年   124篇
  2000年   93篇
  1999年   147篇
  1998年   153篇
  1997年   124篇
  1996年   108篇
  1995年   132篇
  1994年   125篇
  1993年   120篇
  1992年   104篇
  1991年   115篇
  1990年   83篇
  1989年   75篇
  1988年   87篇
  1987年   87篇
  1986年   61篇
  1985年   83篇
  1984年   98篇
  1983年   76篇
  1982年   102篇
  1981年   94篇
  1980年   80篇
  1979年   64篇
  1978年   67篇
  1977年   60篇
  1976年   54篇
  1975年   55篇
  1974年   51篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.  相似文献   
952.
Human matrix metalloproteinase 9 (MMP-9), also called gelatinase B, is particularly involved in inflammatory processes, bone remodelling and wound healing, but is also implicated in pathological processes such as rheumatoid arthritis, atherosclerosis, tumour growth, and metastasis. We have prepared the inactive E402Q mutant of the truncated catalytic domain of human MMP-9 and co-crystallized it with active site-directed synthetic inhibitors of different binding types. Here, we present the X-ray structures of five MMP-9 complexes with gelatinase-specific, tight binding inhibitors: a phosphinic acid (AM-409), a pyrimidine-2,4,6-trione (RO-206-0222), two carboxylate (An-1 and MJ-24), and a trifluoromethyl hydroxamic acid inhibitor (MS-560). These compounds bind by making a compromise between optimal coordination of the catalytic zinc, favourable hydrogen bond formation in the active-site cleft, and accommodation of their large hydrophobic P1' groups in the slightly flexible S1' cavity, which exhibits distinct rotational conformations of the Pro421 carbonyl group in each complex. In all these structures, the side-chain of Arg424 located at the bottom of the S1' cavity is not defined in the electron density beyond C(gamma), indicating its mobility. However, we suggest that the mobile Arg424 side-chain partially blocks the S1' cavity, which might explain the weaker binding of most inhibitors with a long P1' side-chain for MMP-9 compared with the closely related MMP-2 (gelatinase A), which exhibits a short threonine side-chain at the equivalent position. These novel structural details should facilitate the design of more selective MMP-9 inhibitors.  相似文献   
953.
The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.  相似文献   
954.
955.
Neurofibromin is the protein product of the tumor suppressor gene NF1, alterations of which are responsible for the pathogenesis of the common disorder Neurofibromatosis type I (NF1). The only well-characterized function of neurofibromin is its RasGAP activity, contained in the central GAP related domain (GRD). By solving the crystal structure of a 31 kDa fragment at the C-terminal end of the GRD we have recently identified a novel bipartite lipid-binding module composed of a Sec14 homologous and a previously undetected pleckstrin homology (PH)-like domain. Using lipid exchange assays along with mass spectrometry we show here that the Sec14-like portion binds to 1-(3-sn-phosphatidyl)-sn-glycerol (PtdGro), (3-sn-phosphatidyl)-ethanolamine (PtdEtn) and -choline (PtdCho) and to a minor extent to (3-sn-phosphatidyl)-l-serine (PtdSer) and 1-(3-sn-phosphatidyl)-d-myo-inositol (PtdIns). Phosphorylated PtdIns (PtdInsPs) are not detected as binders in the mass spectrometry assay, but their soluble inositol-phosphate headgroups and related compounds can inhibit the lipid exchange reaction. We also present here the crystal structure of this module with the Sec14 portion bound to a cellular glycerophospholipid ligand. Our structure has model character for the substrate-bound form of yeast Sec14p, of which only detergent bound structures are available so far. To assess potential regulation of the lipid exchange reaction in detail, we present a novel strategy using nanospray mass spectrometry. Ion intensities of initial phospholipids and exchanged deuterated analogues bound by the protein module allow the quantitative analysis of differences in the exchange activity under various conditions.  相似文献   
956.
Vif is a primate lentiviral accessory protein that is crucial for viral infectivity. Vif counteracts the antiviral activity of host deaminases such as APOBEC3G and APOBEC3F. We now report a novel function of African green monkey simian immunodeficiency virus (SIVagm) Vif that promotes replication of SIVagm in human cells lacking detectable deaminase activity. We found that cyclophilin A (CypA) was excluded from wild-type SIV particles but was efficiently packaged into vif-deficient SIVagm virions. The presence of CypA in vif-defective SIVagm was correlated with reduced viral replication. Infection of CypA knockout Jurkat cells or treatment of Jurkat cells with cyclosporine A eliminated the Vif-sensitive inhibition and resulted in replication profiles that were similar for wild-type and vif-deficient SIVagm. Importantly, the inhibitory effect of CypA was restricted to virus-producing cells and was TRIM5alpha independent. The abilities of SIVagm Vif to inhibit encapsidation of CypA and to increase viral infectivity were shared by rhesus macaque SIV Vif and thus seem to be general properties of SIV Vif proteins. Exclusion of CypA from SIVagm particles was not associated with intracellular degradation, suggesting a mode of Vif action distinct from that proposed for APOBEC3G. This is the first report of a novel vif-sensitive antiviral activity of human CypA that may limit zoonotic transmission of SIV and the first demonstration of CypA encapsidation into a virus other than human immunodeficiency virus type 1.  相似文献   
957.
To determine the influence of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells on the development of drug resistance mutations in the HIV-1 protease, we analyzed protease sequences from viruses from a human leukocyte antigen class I (HLA class I)-typed cohort of 94 HIV-1-positive individuals. In univariate statistical analyses (Fisher's exact test), minor and major drug resistance mutations as well as drug-associated polymorphisms showed associations with HLA class I alleles. All correlations with P values of 0.05 or less were considered to be relevant without corrections for multiple tests. A subset of these observed correlations was experimentally validated by enzyme-linked immunospot assays, allowing the definition of 10 new epitopes recognized by CD8+ T cells from patients with the appropriate HLA class I type. Several drug resistance-associated mutations in the protease acted as escape mutations; however, cells from many patients were still able to generate CD8+ T cells targeting the escape mutants. This result presumably indicates the usage of different T-cell receptors by CD8+ T cells targeting these epitopes in these patients. Our results support a fundamental role for HLA class I-restricted immune responses in shaping the sequence of the HIV-1 protease in vivo. This role may have important clinical implications both for the understanding of drug resistance pathways and for the design of therapeutic vaccines targeting drug-resistant HIV-1.  相似文献   
958.
959.
960.
beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5'-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5'-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, beta-d-2'-deoxy-2'-fluoro-2'-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5'-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 mum, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5'-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号