首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8679篇
  免费   677篇
  国内免费   3篇
  2021年   82篇
  2020年   75篇
  2019年   79篇
  2018年   83篇
  2017年   97篇
  2016年   158篇
  2015年   263篇
  2014年   313篇
  2013年   429篇
  2012年   497篇
  2011年   464篇
  2010年   367篇
  2009年   285篇
  2008年   461篇
  2007年   494篇
  2006年   465篇
  2005年   437篇
  2004年   453篇
  2003年   445篇
  2002年   453篇
  2001年   102篇
  2000年   84篇
  1999年   132篇
  1998年   141篇
  1997年   116篇
  1996年   97篇
  1995年   118篇
  1994年   117篇
  1993年   111篇
  1992年   94篇
  1991年   103篇
  1990年   75篇
  1989年   78篇
  1988年   69篇
  1987年   82篇
  1986年   62篇
  1985年   84篇
  1984年   95篇
  1983年   71篇
  1982年   94篇
  1981年   86篇
  1980年   71篇
  1979年   62篇
  1978年   61篇
  1977年   59篇
  1976年   44篇
  1975年   53篇
  1974年   48篇
  1973年   59篇
  1972年   47篇
排序方式: 共有9359条查询结果,搜索用时 15 毫秒
991.
Site-directed mutagenesis in the photosystem II (PSII) oxygen-evolving enzyme was achieved in the thermophilic cyanobacterium Thermosynechococcus elongatus. PSII from this species is the focus of attention because its robustness makes it suitable for enzymological and biophysical studies. PSII, which lacks the redox-active tyrosine Tyr(D), was engineered by substituting a phenylalanine for tyrosine 160 of the D2 protein. An aim of this work was to engineer a mutant for spectroscopy, in particular, for EPR, on the active enzyme. The Tyr(D)(*) EPR signal was monitored in whole cells (i) to control the expression level of the two genes (psbD(1) and psbD(2)) encoding D2 and (ii) to assess the success of the mutagenesis. Both psbD(1) and psbD(2) could be expressed, and recombination occurred between them. The D2-Y160F mutation was introduced into psbD(1) after psbD(2) was deleted and a His-tag was attached to the CP43 protein. The effects of the Y160F mutation were characterized in cells, thylakoids, and isolated PSII. The efficiency of enzyme function under the conditions tested was unaffected. The distribution and lifetime of the redox states (S(n)() states) of the enzyme cycle were modified, with more S(0) in the dark and no rapid decay phase of S(3). Although not previously reported, these effects were expected because Tyr(D)(*) is able to oxidize S(0) and Tyr(D) is able to reduce S(2) and S(3). Slight changes in the difference spectra in the visible and infrared recorded upon the formation and reduction of the chlorophyll cation P(680)(+) and kinetic measurements of P(680)(+) reduction indicated minor structural perturbations, perhaps in the hydrogen-bonding network linking Tyr(D) and P(680), rather than electrostatic changes associated with the loss of a charge from Tyr(D)(*)(H(+)). We show here that this fully active preparation can provide spectra from the Mn(4)CaO(4) complex and associated radical species uncontaminated by Tyr(D)(*).  相似文献   
992.
Larsen K 《Biometrics》2004,60(1):85-92
Multiple categorical variables are commonly used in medical and epidemiological research to measure specific aspects of human health and functioning. To analyze such data, models have been developed considering these categorical variables as imperfect indicators of an individual's "true" status of health or functioning. In this article, the latent class regression model is used to model the relationship between covariates, a latent class variable (the unobserved status of health or functioning), and the observed indicators (e.g., variables from a questionnaire). The Cox model is extended to encompass a latent class variable as predictor of time-to-event, while using information about latent class membership available from multiple categorical indicators. The expectation-maximization (EM) algorithm is employed to obtain maximum likelihood estimates, and standard errors are calculated based on the profile likelihood, treating the nonparametric baseline hazard as a nuisance parameter. A sampling-based method for model checking is proposed. It allows for graphical investigation of the assumption of proportional hazards across latent classes. It may also be used for checking other model assumptions, such as no additional effect of the observed indicators given latent class. The usefulness of the model framework and the proposed techniques are illustrated in an analysis of data from the Women's Health and Aging Study concerning the effect of severe mobility disability on time-to-death for elderly women.  相似文献   
993.
Sizing DNA using a nanometer-diameter pore   总被引:1,自引:0,他引:1       下载免费PDF全文
Each species from bacteria to human has a distinct genetic fingerprint. Therefore, a mechanism that detects a single molecule of DNA represents the ultimate analytical tool. As a first step in the development of such a tool, we have explored using a nanometer-diameter pore, sputtered in a nanometer-thick inorganic membrane with a tightly focused electron beam, as a transducer that detects single molecules of DNA and produces an electrical signature of the structure. When an electric field is applied across the membrane, a DNA molecule immersed in electrolyte is attracted to the pore, blocks the current through it, and eventually translocates across the membrane as verified unequivocally by gel electrophoresis. The relationship between DNA translocation and blocking current has been established through molecular dynamics simulations. By measuring the duration and magnitude of the blocking current transient, we can discriminate single-stranded from double-stranded DNA and resolve the length of the polymer.  相似文献   
994.
We studied domain formation in mixtures of the monounsaturated lipids SOPC and POPE as a function of temperature and composition by NMR. Magic angle spinning at kHz frequencies restored resolution of (1)H NMR lipid resonances in the fluid phase, whereas the linewidth of gel-phase lipids remained rather broad and spinning frequency dependent. In regions of fluid- and gel-phase coexistence, spectra are a superposition of resonances from fluid and gel domains, as indicated by the existence of isosbestic points. Quantitative determination of the amount of lipid in the coexisting phases is straightforward and permitted construction of a binary phase diagram. Lateral rates of lipid diffusion were determined by (1)H MAS NMR with pulsed field gradients. At the onset of the phase transition near 25 degrees C apparent diffusion rates became diffusion time dependent, indicating that lipid movement is obstructed by the formation of gel-phase domains. A percolation threshold at which diffusion of fluid-phase lipid becomes confined to micrometer-size domains was observed when approximately 40% of total lipid had entered the gel phase. The results indicate that common phosphatidylethanolamines may trigger domain formation in membranes within a physiologically relevant temperature range. This novel NMR approach may aid the study of lipid rafts.  相似文献   
995.
The function of membrane proteins often depends on the proteins' interaction with their lipid environment, spectacularly so in the case of mechanosensitive channels, which are gated through tension mediated by the surrounding lipids. Lipid bilayer tension is distributed quite inhomogeneously, but neither the scale at which relevant variation takes place nor the effect of varying lipid composition or tension has yet been investigated in atomic detail. We calculated lateral pressure profile distributions in lipid bilayers of various composition from all-atom molecular dynamics simulations totaling 110.5 ns in length. Reproducible pressure profile features at the 1 A length scale were determined. Lipids with phosphatidylcholine headgroups were found to shift the lateral pressure out of the hydrophobic core and into the headgroup region by an amount that is independent of area per lipid. POPE bilayers simulated at areas smaller than optimal exerted dramatically higher lateral pressure in a narrow region at the start of the aliphatic chain. Stretching of POPC bilayers increased tension predominantly in the same region. A simple geometric analysis for the gating of the mechanosensitive channel MscL suggests that pressure profiles affect its gating through the second moment of the profile in a tension-independent manner.  相似文献   
996.
In the physiological form, the prion protein is a glycoprotein tethered to the cell surface via a C-terminal glycosylphosphatidylinositol anchor, consisting of a largely alpha-helical globular C-terminal domain and an unstructured N-terminal portion. This unstructured part of the protein contains four successive octapeptide repeats, which were shown to bind up to four Cu(2+) ions in a cooperative manner. To mimic the location of the protein on the cell membrane and to analyze possible structuring effects of the lipid/water interface, the conformational preferences of a single octapeptide repeat and its tetrameric form, as well of the fragment 92-113, proposed as an additional copper binding site, were comparatively analyzed in aqueous and dodecylphosphocholine micellar solution as a membrane mimetic. While for the downstream fragment 92-113 no conformational effects were detectable in the presence of DPC micelles by CD and NMR, both the single octapeptide repeat and, in an even more pronounced manner, its tetrameric form are restricted into well-defined conformations. Because of the repetitive character of the rigid structural subdomain in the tetrarepeat molecule, the spatial arrangement of these identical motifs could not be resolved by NMR analysis. However, the polyvalent nature of the repetitive subunits leads to a remarkably enhanced interaction with the micelles, which is not detectably affected by copper complexation. These results strongly suggest interactions of the cellular form of PrP (PrP(c)) N-terminal tail with the cell membrane surface at least in the octapeptide repeat region with preorganization of these sequence portions for copper complexation. There are sufficient experimental facts known that support a physiological role of copper complexation by the octapeptide repeat region of PrP(c) such as a copper-buffering role of the PrP(c) protein on the extracellular surface.  相似文献   
997.
998.
In the phototransduction pathway of rhodopsin, the metarhodopsin (Meta) III retinal storage form arises from the active G-protein binding Meta II by a slow spontaneous reaction through the Meta I precursor or by light absorption and photoisomerization, respectively. Meta III is a side product of the Meta II decay path and holds its retinal in the original binding site, with the Schiff base bond to the apoprotein reprotonated as in the dark ground state. It thus keeps the retinal away from the regeneration pathway in which the photolyzed all-trans-retinal is released. This study was motivated by our recent observation that Meta III remains stable for hours in membranes devoid of regulatory proteins, whereas it decays much more rapidly in situ. We have now explored the possibility of regulated formation and decay of Meta III, using intrinsic opsin tryptophan fluorescence and UV-visible and Fourier transform infrared spectroscopy. We find that a rapid return of Meta III into the regeneration pathway is triggered by the G-protein transducin (G(t)). Depletion of the retinal storage is initiated by a novel direct bimolecular interaction of G(t) with Meta III, which was previously considered inactive. G(t) thereby induces the transition of Meta III into Meta II, so that the retinylidene bond to the apoprotein can be hydrolyzed, and the retinal can participate again in the normal retinoid cycle. Beyond the potential significance for retinoid metabolism, this may provide the first example of a G-protein-catalyzed conversion of a receptor.  相似文献   
999.
Pasteurella multocida produces a 146-kDa protein toxin (PMT), which activates multiple cellular signal transduction pathways, resulting in the activation of phospholipase Cbeta, RhoA, Jun kinase, and extracellular signal-regulated kinase. Using Galpha(q)/Galpha(11) -deficient cells, it was shown that the PMT-induced pleiotropic effects are mediated by Galpha(q) but not by the highly related Galpha(11) protein (Zywietz, A., Gohla, A., Schmelz, M., Schultz, G., and Offermanns, S. (2001) J. Biol. Chem. 276, 3840-3845). Here we studied the molecular basis of the unique specificity of PMT to distinguish between Galpha(q) and/or Galpha(11). Infection of Galpha(q) -deficient cells with retrovirus-encoding Galpha(q) caused reconstitution of PMT-induced activation of phospholipase Cbeta, whereas Galpha(11) -encoding virus did not reconstitute PMT activity. Chimeras between Galpha(q) and/or Galpha(11) revealed that a peptide region of Galpha(q), covering amino acid residues 105-113, is essential for the action of PMT to activate phospholipase Cbeta. Exchange of glutamine 105 or asparagine 109 of Galpha(11), which are located in the all-helical domain of the Galpha subunit, with the equally positioned histidines of Galpha(q), renders Galpha(11) capable of transmission PMT-induced phospholipase Cbeta activation. The data indicate that the all-helical domain of Galpha(q) is essential for the action of PMT and suggest an essential functional role of this domain in signal transduction via G(q) proteins.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号