首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   11篇
  2022年   3篇
  2020年   2篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   10篇
  2013年   6篇
  2012年   11篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   15篇
  2007年   17篇
  2006年   4篇
  2005年   13篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1969年   7篇
  1968年   2篇
  1967年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
41.
Bundle-forming pili (BFP) promote the adherence of typical enteropathogenic Escherichia coli (EPEC) to human intestinal epithelial cells. BFP are polymers of bundlin and nine bundlin alleles have been identified in EPEC isolated from diverse sources. These alleles are divided into two main groups, α and β, based on their amino acid sequences. Alpha bundlins are also N -acetyllactosamine- (LacNAc) specific lectins and bind to HEp-2 cells, whereas β bundlins do not display these characteristics. The four surface-exposed regions of amino acid sequence heterogeneity between α and β bundlin were therefore investigated as potential LacNAc-specific carbohydrate-binding domains in a bundlin. Mutation of one of these domains, 137-GENNI-141, in α1 bundlin to that of β bundlin (136-SPDST-140) resulted in BFP that no longer bound to LacNAc or HEp-2 cells. Conversely, mutating the β3 bundlin gene to encode the α bundlin sequence at this domain resulted in the gain of HEp-2 cell adherence. The importance of this domain in carbohydrate binding is supported by the finding that introducing the mutation GENNI→GENNT altered the α1 bundlin carbohydrate-binding specificity from LacNAc to the Lewis X glycan sequence.  相似文献   
42.
43.
The human neuraminidases (NEU) consist of a family of four isoforms (NEU1-NEU4). Members of this enzyme family are proposed to have important roles in health and disease through regulation of the composition of cellular sialosides. The NEU3 isoform is a membrane-associated enzyme that cleaves glycolipid substrates. However, few reports have examined the substrate specificity of the enzyme for non-natural substrates. We report here a series of 11 synthetic trisaccharides that feature modifications of the aglycone or the Neu5Ac residue of an octyl β-sialyllactoside. The time course of substrate cleavage by NEU3 was monitored using an electrospray ionization mass spectrometry assay to obtain relative rates (k(rel)). We observed that NEU3 substrate activity was directly dependent upon the hydrophobicity of the aglycone but had no apparent requirement for features of the ceramide headgroup. We also observed that trisaccharides with incorporated azide groups in the Neu5Ac residue at either C9 or the N5-Ac position were substrates, and in the case of the N5-azidoacetyl derivative, the activity was superior to that of GM3. However, the incorporation of larger aryl groups was tolerated only at C9, but not at N5-Ac. We propose a two-site model for enzyme recognition, requiring interaction at both the Neu5Ac residue and the hydrophobic aglycone.  相似文献   
44.
Understanding patients' perceptions of surgical results and their impacts on quality of life is of primary importance in plastic surgery, as procedures are largely performed to improve either appearance or function. Patient-reported outcome measures are questionnaires specifically designed to quantify aspects of health-related quality of life from the patient's perspective. This article presents an overview of patient-reported outcome measures. It also aims to provide plastic surgeons with the necessary critical appraisal skills to interpret and apply evidence from patient-reported outcomes research in their own clinical practice.  相似文献   
45.
Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well-characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in?silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders.  相似文献   
46.
Glycoproteins constitute a class of compounds of increasing importance for pharmaceutical applications. The manipulation of bacterial protein glycosylation systems from Gram-negative bacteria for the synthesis of recombinant glycoproteins is a promising alternative to the current production methods. Proteins carrying Lewis antigens have been shown to have potential applications for the treatment of diverse autoimmune diseases. In this work, we developed a mixed approach consisting of in vivo and in vitro steps for the synthesis of glycoproteins containing the Lewis x antigen. Using glycosyltransferases from Haemophilus influenzae, we engineered Escherichia coli to assemble a tetrasaccharide on the lipid carrier undecaprenylphosphate. This glycan was transferred in vivo from the lipid to a carrier protein by the Campylobacter jejuni oligosaccharyltransferase PglB. The glycoprotein was then fucosylated in vitro by a truncated fucosyltransferase from Helicobacter pylori. Diverse mass spectrometry techniques were used to confirm the structure of the glycan. The strategy presented here could be adapted in the future for the synthesis of diverse glycoproteins. Our experiments demonstrate that bacterial enzymes can be exploited for the production of glycoproteins carrying glycans present in human cells for potential therapeutic applications.  相似文献   
47.
Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease.  相似文献   
48.
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.  相似文献   
49.
50.
The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号