首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   22篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   4篇
  2016年   11篇
  2015年   11篇
  2014年   17篇
  2013年   15篇
  2012年   29篇
  2011年   30篇
  2010年   17篇
  2009年   7篇
  2008年   20篇
  2007年   20篇
  2006年   19篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1989年   1篇
  1984年   2篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1958年   1篇
  1937年   1篇
  1935年   1篇
排序方式: 共有316条查询结果,搜索用时 518 毫秒
101.
Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi‐domain protein system. The simple model system of the two‐domain fusion protein investigated in this work consisted of a well‐folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3‐TrpCage, TrpCage‐PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.  相似文献   
102.
Viral infection of the liver can lead to severe tissue damage when high levels of viral replication and spread in the organ are coupled with strong induction of inflammatory responses. Here we report an unexpected correlation between the expression of a functional X domain encoded by the hepatotropic mouse hepatitis virus strain A59 (MHV-A59), the high-level production of inflammatory cytokines, and the induction of acute viral hepatitis in mice. X-domain (also called macro domain) proteins possess poly-ADP-ribose binding and/or ADP-ribose-1′′-phosphatase (ADRP) activity. They are conserved in coronaviruses and in members of the “alpha-like supergroup” of phylogenetically related positive-strand RNA viruses that includes viruses of medical importance, such as rubella virus and hepatitis E virus. By using reverse genetics, we constructed a recombinant murine coronavirus MHV-A59 mutant encoding a single-amino-acid substitution of a strictly conserved residue that is essential for coronaviral ADRP activity. We found that the mutant virus replicated to slightly reduced titers in livers but, strikingly, did not induce liver disease. In vitro, the mutant virus induced only low levels of the inflammatory cytokines tumor necrosis factor alpha and interleukin-6 (IL-6). In vivo, we found that IL-6 production, in particular, was reduced in the spleens and livers of mutant virus-infected mice. Collectively, our data demonstrate that the MHV X domain exacerbates MHV-induced liver pathology, most likely through the induction of excessive inflammatory cytokine expression.  相似文献   
103.
In vitro cultured endothelial progenitor cells (cEPC) are used for intracoronary cell therapy in cardiac regeneration. The aim of this study was to investigate whether cEPC and circulating mononuclear cells (MNC), which include a small number of in vivo circulating EPC, are able to transmigrate through the endothelial barrier into the cardiac tissue. MNC and EPC were isolated from the peripheral blood from healthy male volunteers (n = 13, 25+/-6 years) and stained with a fluorescent marker. The cells were perfused in vitro through organs with endothelial layers of different phenotypes (rat aorta, human umbilical vein, isolated mouse heart). The endothelium and the basal lamina were then stained by immunofluorescence and the cryo-sections analysed using a confocal laser scanning microscope. After perfusion through the rat aorta, an adhesion/integration of MNC was observed at the endothelial layer and the basal lamina beneath endothelial cells. However, no migration of MNC over the endothelial barrier was found. This remained true even when the cell numbers were increased (from 0.5 to 10 million cells/h), when the time of perfusion was prolonged (1.5-4 h) and when the aorta was cultivated for 24 h. In the Langendorff-perfused mouse heart with intact endothelium, no migration of MNC (1 x 10(7)) or cEPC (1 x 10(6)) was observed after 0.5 and 2 h. In conclusion, MNC and cEPC do not possess any capacity to transmigrate the endothelial barrier. In the context of stem cell therapy, these cells may therefore serve as endothelial regenerators but not as cardiomyocyte substitutes.  相似文献   
104.
105.
We have employed the proteomic approach in combination with mass spectrometry to study the immune response of honey bee workers at different developmental stages. Analysis of the hemolymph proteins of noninfected, mock-infected and immune-challenged individuals by polyacrylamide gel electrophoresis showed differences in the protein profiles. We present evidence that in vitro reared honey bee larvae respond with a prominent humoral reaction to aseptic and septic injury as documented by the transient synthesis of the three antimicrobial peptides (AMPs) hymenoptaecin, defensin1, and abaecin. In contrast, young adult worker bees react with a broader spectrum of immune reactions that include the activation of prophenoloxidase and humoral immune responses. At least seven proteins appeared consistently in the hemolymph of immune-challenged bees, three of which are identical to the AMPs induced also in larvae. The other four, i.e., phenoloxidase (PO), peptidoglycan recognition protein-S2, carboxylesterase (CE), and an Apis-specific protein not assigned to any function (HP30), are induced specifically in adult bees and, with the exception of PO, are not expressed after aseptic injury. Structural features of CE and HP30, such as classical leucine zipper motifs, together with their strong simultaneous induction upon challenge with bacteria suggest an important role of the two novel bee-specific immune proteins in response to microbial infections.  相似文献   
106.
Field-grown maize hybrids were assessed for variability in 137Cs accumulation in vegetative parts of young and mature maize shoots and grains during 2 years with contrasting climatic conditions. Trials were carried out at different sites in the Tula region of Russia, which is characterized by a highly homogenous soil classified as Luvic Chernozem according to FAO/UNESCO, and average contamination levels of about 509–564 Bq 137Cs kg−1 soil. In the first year, 19 hybrids were tested. The two hybrids with the highest and the two with the lowest 137Cs concentration ratios (C r) were also tested in the second year, together with another 11 hybrids. All samples were additionally assessed for their potassium content. In both investigation periods 137Cs accumulation in vegetative shoots and grains was found to vary up to more than twofold between hybrids. However, C r values of those hybrids that showed a relatively low 137Cs accumulation in the first year were not necessarily low in the second year, and the ratio between the 137Cs C r of low- and high-accumulating hybrids was much smaller than in the year before. In both vegetative shoots and grains the variance caused by the different years was larger than the genotypic variance, thus indicating the limits of genotype selection for this trait. Significant correlations were determined between the 40K and 137Cs C r values in the same tissue, but for one hybrid indications for uncoupling of the two traits were found. Average Cs/K ratios in young shoots, mature shoots and grains were 0.06, 0.05 and 0.02, respectively, indicating tissue- and stage-specific regulation of accumulation within each plant. The findings are discussed with respect to new approaches towards a better understanding of 137Cs accumulation and its potential reduction in plants. Katharina Schneider was deceased.  相似文献   
107.
Deletion of the nef gene from simian immunodeficiency virus (SIV) strain SIVmac239 yields a virus that undergoes attenuated growth in rhesus macaques and offers substantial protection against a subsequent challenge with some SIV wild-type viruses. We used a recently described model to identify sites in which the SIVDeltanef vaccine strain replicates and elicits immunity in vivo. A high dose of SIVDeltanef was applied to the palatine and lingual tonsils, where it replicated vigorously in this portal of entry at 7 days. Within 2 weeks, the virus had spread and was replicating actively in axillary lymph nodes, primarily in extrafollicular T-cell-rich regions but also in germinal centers. At this time, large numbers of perforin-positive cells, both CD8(+) T cells and CD3-negative presumptive natural killer cells, were found in the tonsil and axillary lymph nodes. The number of infected cells and perforin-positive cells then fell. When autopsy studies were carried out at 26 weeks, only 1 to 3 cells hybridized for viral RNA per section of lymphoid tissue. Nevertheless, infected cells were detected chronically in most lymphoid organs, where the titers of infectious virus could exceed by a log or more the titers in blood. Immunocytochemical labeling at the early active stages of infection showed that cells expressing SIVDeltanef RNA were CD4(+) T lymphocytes. A majority of infected cells were not in the active cell cycle, since 60 to 70% of the RNA-positive cells in tissue sections lacked the Ki-67 cell cycle antigen, and both Ki-67-positive and -negative cells had similar grain counts for viral RNA. Macrophages and dendritic cells, identified with a panel of monoclonal antibodies to these cells, were rarely infected. We conclude that the attenuated growth and protection observed with the SIVDeltanef vaccine strain does not require that the virus shift its characteristic site of replication, the CD4(+) T lymphocyte. In fact, this immunodeficiency virus can replicate actively in CD4(+) T cells prior to being contained by the host, at least in part by a strong killer cell response that is generated acutely in the infected lymph nodes.  相似文献   
108.
Thromboxane B2 was formed from endogenous precursors during short incubations of guinea pig and rat cerebral cortex. The amount formed by guinea pig brain tissue was 5–6 times the formation of prostaglandin F and E2. Noradrenalin stimulated and indomethacin and mercaptoethanol inhibited thromboxane B2 formation. The mass spectrum of the brain compound was identical to thromboxane B2 formed from arachidonic acid by guinea pig lung and human platelets.  相似文献   
109.
A new approach to cancer and new methods in examining rare human chromosome breakage syndromes have brought to light complex interactions between different pathways involved in damage response, cell cycle checkpoint control and DNA repair. The genes affected in these different syndromes are involved in networks of processes that respond to DNA damage and prevent chromosomal aberrations during the cell cycle. The genes involved include the ATM, ATR, FA-associated genes, NBS1 and the cancer susceptibility genes BRCA1 and BRCA2. Chromosomal instability is a common feature of many human cancers and most of the instability syndromes, characterized by sensitivity to different types of DNA damage, also show increased cancer susceptibility. Better understanding of these syndromes and their links with familial cancer provide new insight into associations between defects in DNA damage response, cell cycle control, DNA repair and cancer. Understanding the damage response repair networks that these studies are revealing will have important implications for the development of cancer management and treatment.  相似文献   
110.
Apoptosis-inducing ligand 2 (Apo2L), also called tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers programmed cell death in various types of cancer cells but not in most normal cells. Apo2L/TRAIL is a homotrimeric protein that interacts with five receptors: death receptor 4 (DR4) and DR5 mediate apoptosis activation, whereas decoy receptor 1 (DcR1), DcR2, and osteoprotegerin counteract this function. Many cancer cell lines express both DR4 and DR5, and each of these receptors can initiate apoptosis independently of the other. However, the relative contribution of DR4 and DR5 to ligand-induced apoptosis is unknown. To investigate this question, we generated death receptor-selective Apo2L/TRAIL variants using a novel approach that enables phage display of mutated trimeric proteins. Selective binding to DR4 or DR5 was achieved with three to six-ligand amino acid substitutions. The DR4-selective Apo2L/TRAIL variants examined in this study showed a markedly reduced ability to trigger apoptosis, whereas the DR5-selective variants had minimally decreased or slightly increased apoptosis-inducing activity. These results suggest that DR5 may contribute more than DR4 to Apo2L/TRAIL-induced apoptosis in cancer cells that express both death receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号