首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   11篇
  2021年   1篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   5篇
  2012年   7篇
  2011年   3篇
  2010年   6篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   6篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有87条查询结果,搜索用时 250 毫秒
31.
Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.  相似文献   
32.
The cryptomonads is a well-defined lineage of unicellular eukaryotes, composed of several marine and freshwater groups. However, the evolutionary relationships among these groups are unclear due to conflicting inferences between morphological and molecular phylogenies. Here, we have inferred the evolutionary relationships among marine and freshwater species in order to better understand the importance of the marine-freshwater boundary on the historical diversification patterns of cryptomonads. We have constructed improved molecular phylogenies by taking into account rate variation both across sites and across sequences (covarion substitutions), and by analysing the vast majority of publicly available cryptomonad 18S rRNA sequences and related environmental phylotypes. The resulting phylogenies included 55 sequences, and revealed two novel freshwater cryptomonad clades (CRY1 and CRY2) and a large hidden diversity of cryptomonads. CRY1 was placed deeply within the cryptomonad phylogeny together with all the major freshwater lineages (i.e. Goniomonas and Cryptomonas), while CRY2 was placed within a lineage of marine species identified as Plagioselmis-like with the aid of a new sequence generated from a cultured species. The inferred phylogenies suggest only few successful marine-freshwater transitions over the history of cryptomonads. Most of the transitions seem to have occurred from marine to fresh waters, but re-colonizations of marine habitats have also taken place. This implies that the differences in the biogeophysical conditions between marine and fresh waters constitute a substantial barrier for the cross-colonization of these environments by cryptomonads.  相似文献   
33.
The initial hydrolysis and acidogenesis of L. hyperborea fronds wereinvestigated in anaerobic batch fermentations. The main product in theacidogenesis of fronds and fronds added extra substrates was acetate.Addition of extra glucose led to a diauxic development with glucose as thepreferred substrate and delayed initiation of alginate lyase activity. Additionof extra mannitol did not affect the initiation of lyase activity, butmaximum activity was reduced. Addition of products such as acetate andpropionate also resulted in a delayed lyase activity. The fermentation ofpure fronds resulted in a high acetate/CO2 ratio, suggesting that thehomoacetogenic pathway played an important role in the degradation ofuronic acids. Addition of mannitol or glucose resulted in a much loweracetate/CO2 ratio and an initial decrease in soluble CODconcentration, probably caused by biomass growth and possibly someH2 production. Thus, the seasonal changes of mannitol and laminaranin L. hyperborea fronds will result in different digestion characteristicsfor this algae throughout the year.  相似文献   
34.
Toxic Microcystis strains often produce several isoforms of the cyclic hepatotoxin microcystin, and more than 65 isoforms are known. This has been attributed to relaxed substrate specificity of the adenylation domain. Our results show that in addition to this, variability is also caused by genetic variation in the microcystin synthetase genes. Genetic characterization of a region of the adenylation domain in module mcyB1 resulted in identification of two groups of genetic variants in closely related Microcystis strains. Sequence analyses suggested that the genetic variation is due to recombination events between mcyB1 and the corresponding domains in mcyC. Each variant could be correlated to a particular microcystin isoform profile, as identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Among the Microcystis species studied, we found 11 strains containing different variants of the mcyABC gene cluster and 7 strains lacking the genes. Furthermore, there is no concordance between the phylogenies generated with mcyB1, 16S ribosomal DNA, and DNA fingerprinting. Collectively, these results suggest that recombination between imperfect repeats, gene loss, and horizontal gene transfer can explain the distribution and variation within the mcyABC operon.  相似文献   
35.
36.
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole‐genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord‐type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord‐type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.  相似文献   
37.

Background  

DNA-dependent RNA polymerase IV and V (Pol IV and V) are multi-subunit enzymes occurring in plants. The origin of Pol V, specific to angiosperms, from Pol IV, which is present in all land plants, is linked to the duplication of the gene encoding the largest subunit and the subsequent subneofunctionalization of the two paralogs (NRPD1 and NRPE1). Additional duplication of the second-largest subunit, NRPD2/NRPE2, has happened independently in at least some eudicot lineages, but its paralogs are often subject to concerted evolution and gene death and little is known about their evolution nor their affinity with Pol IV and Pol V.  相似文献   
38.
Turbidity measurements revealed that the circadian rhythm in the growth rate of the marine diatom Skeletonema costatum (Greville) Cleve was insensitive to temperature between 5 and 22°C. Growth of the alga was inhibited by lithium ions at concentrations higher than 2 m M . Lengthening of the circadian period was observed in the presence of 0.5–1.5 m M Li+. The results indicate that the lithium effect generally observed on circadian rhythms should not necessarily be ascribed to changes in an intercellular coupling of cellular oscillators.  相似文献   
39.
40.
The Plankthotrix Anagn. et Komárek population in the mesotrophic Lake Steinsfjorden has been intensively studied over several decades. This Planktothrix population produces a number of different classes of oligopetides. However, over the study period, only four main oligopeptide profiles (chemotypes) have been associated with the strains isolated from the lake. The chemotypes show distinct interactions with the environment, demonstrated by shifts in abundance along time series and vertical profiles. Here, we present genetic analysis of nonribosomal peptide synthetase (NRPS) gene regions in strains representing the four Planktothrix chemotypes in Lake Steinsfjorden. On the basis of phylogenetic analyses, we show that the NRPS genes for microcystin (mcy) and cyanopeptolin (oci) display the same clustering as do the chemotypes. Nucleotide diversity in mcy and oci was significantly higher between strains of different chemotypes than between strains of the same chemotype. Ka/Ks (nonsynonymous vs. synonymous mutations) values indicated positive selection in several polymorphic regions of the mcy and oci genes. Notably, incongruence between the phylogenetic trees for different gene segments and split decomposition analyses for segments of oci suggested horizontal gene transfer (HGT) events between strains showing different oligopeptide profiles. The oci HGT region encodes a module responsible for incorporating a variable amino acid in cyanopeptolin and is one of the regions suggested to be under positive selection. Taken together, our data suggest that there are four genetically distinct sympatric subpopulations—displayed as distinct chemotypes—in Lake Steinsfjorden. The diversification process of the chemotypes, and consequently the subpopulations, is driven by HGT and reinforced by positive selection of the corresponding NRPS gene regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号