首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   9篇
  90篇
  2023年   1篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   4篇
  1985年   1篇
  1967年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
31.
Siderophores in soil solution of coniferous forest soils have been chemically identified for the first time. We have identified the siderophores ferrichrome and ferricrocin in soil solution of the upper organic layer by High Performance Liquid Chromatography (HPLC) Mass Spectrometry (MS). The soil solutions were sampled from mor layers of podzolic soils from the south and the north of Sweden and from a mor layer overlying granitic rock and intensively colonised by ectomycorrhizal hyphae. Ferrichrome was found in nanomolar concentrations in all soil solutions investigated and ferricrocin only in the soil solution from the mor layer covering a rock and in the soil solution from the north of Sweden. The findings are discussed in relation to the possible role of fungal hyphae and siderophores in weathering minerals in podzolic soils under coniferous forests. Citric and oxalic acid are able to dissolve minerals via complexation of cations from the mineral. Siderophores should be, kinetically and thermodynamically, even more efficient complexing agents for trivalent cations than oxalic and citric acid. The present study provides direct evidence for the presence of siderophores in soil solution.  相似文献   
32.
A real-time quantitative PCR (RTQ-PCR) method for measuring the abundance of Pseudoalteromonas species in marine samples is presented. PCR primers targeting a Pseudoalteromonas-specific region of the 16S rRNA gene were tested at three different levels using database searches (in silico), a selection of pure cultures (in vitro), and a combined denaturing gradient gel electrophoresis and cloning approach on environmental DNA (in situ). The RTQ-PCR method allowed for the detection of SYBR Green fluorescence from double-stranded DNA over a linear range spanning six orders of magnitude. The detection limit was determined as 1.4 fg of target DNA (1,000 gene copies) measured in the presence of 20 ng of nontarget DNA from salmon testes. In this study, we discuss the importance of robust post-PCR analyses to overcome pitfalls in RTQ-PCR when samples from different complex marine habitats are analyzed and compared on a nonroutine basis. Representatives of the genus Pseudoalteromonas were detected in samples from all investigated habitats, suggesting a widespread distribution of this genus across many marine habitats (e.g., seawater, rocks, macroalgae, and marine animals). Three sample types were analyzed by RTQ-PCR to determine the relative abundance of Pseudoalteromonas ribosomal DNA (rDNA) compared to the total abundance of eubacterial rDNA. The rDNA fractions of Pseudoalteromonas compared to all Eubacteria were 1.55% on the green alga Ulva lactuca, 0.10% on the tunicate Ciona intestinalis, and 0.06% on the green alga Ulvaria fusca.  相似文献   
33.
34.
We report the characterization of Cep170, a forkhead-associated (FHA) domain protein of previously unknown function. Cep170 was identified in a yeast two-hybrid screen for interactors of Polo-like kinase 1 (Plk1). In human cells, Cep170 is constantly expressed throughout the cell cycle but phosphorylated during mitosis. It interacts with Plk1 in vivo and can be phosphorylated by Plk1 in vitro, suggesting that it is a physiological substrate of this kinase. Both overexpression and small interfering RNA (siRNA)-mediated depletion studies suggest a role for Cep170 in microtuble organization and cell morphology. Cep170 associates with centrosomes during interphase and with spindle microtubules during mitosis. As shown by immunoelectron microscopy, Cep170 associates with subdistal appendages, typical of the mature mother centriole. Thus, anti-Cep170 antibodies stain only one centriole during G1, S, and early G2, but two centrioles during late G2 phase of the cell cycle. We show that Cep170 labeling can be used to discriminate bona fide centriole overduplication from centriole amplification that results from aborted cell division.  相似文献   
35.
It was previously shown that enhanced nisin resistance in some mutants was associated with increased expression of three genes, pbp2229, hpk1021, and lmo2487, encoding a penicillin-binding protein, a histidine kinase, and a protein of unknown function, respectively. In the present work, we determined the direct role of the three genes in nisin resistance. Interruption of pbp2229 and hpk1021 eliminated the nisin resistance phenotype. Interruption of hpk1021 additionally abolished the increase in pbp2229 expression. The results indicate that this nisin resistance mechanism is caused directly by the increase in pbp2229 expression, which in turn is brought about by the increase in hpk1021 expression. We also found a degree of cross-protection between nisin and class IIa bacteriocins and investigated possible mechanisms. The expression of virulence genes in one nisin-resistant mutant and two class IIa bacteriocin-resistant mutants of the same wild-type strain was analyzed, and each mutant consistently showed either an increase or a decrease in the expression of virulence genes (prfA-regulated as well as prfA-independent genes). Although the changes mostly were moderate, the consistency indicates that a mutant-specific change in virulence may occur concomitantly with bacteriocin resistance development.  相似文献   
36.
In several organisms osmotic stress tolerance is mediated by the accumulation of the osmoprotective compound glycine betaine. With the ambition to transfer the betaine biosynthetic pathway into plants not capable of synthesizing this osmoprotectant, the Escherichia coli gene betB encoding the second enzyme in the pathway, betaine-aldehyde dehydrogenase was introduced into Nicotiana tabacum. The betB structural gene was fused to the promoter of ats1a, a gene coding for the small subunit of Rubisco in Arabidopsis thaliana. Two types of constructs were made, either encoding the N-terminal transit peptide for chloroplast targeting or without the targeting signal for cytoplasmic localization of the BetB polypeptide. Analysis of transgenic N. tabacum plants harboring these constructs showed that in both cases the transgenes were expressed. Northern analysis of the plants demonstrated the accumulation of betB-related mRNA of the correct size. The production and processing of the corresponding polypeptides could be demonstrated by immunoblotting using polyclonal antisera raised against the BetB polypeptide. The transit peptide encoded by ats1a was able to direct BetB to the chloroplast, as suggested by the presence of the correctly processed BetB polypeptide in the chloroplast fraction. High betaine-aldehyde dehydrogenase activity was detected in transgenic plants, both in those where the chimeric gene product was targeted to the chloroplast and those where it remained in the cytoplasm. The transgenic tobacco acquired resistance to the toxic intermediate, betaine aldehyde, in the betaine biosynthetic pathway indicating that the bacterial enzyme is biologically active in its new host. Furthermore, these transgenic plants were able to convert exogenously supplied betaine aldehyde efficiently to glycine betaine.  相似文献   
37.
The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% +/- 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.  相似文献   
38.
Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B'γ (B'γ) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b'γ plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b'γ cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b'γ mutant shows constitutive activation of both salicylic acid- and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b'γ leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b'γ leaves. We suggest that the specific B'γ subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.  相似文献   
39.
The hepatitis C virus (HCV)-specific T cell response in patients with chronic HCV is dysfunctional. In this study, we aimed at restoring immunological function through therapeutic vaccination in a transgenic mouse model with impaired HCV-specific T cell responses due to a persistent presence of hepatic HCV nonstructural (NS)3/4A Ags. The HCV-specific T cells have an actively maintained dysfunction reflected in reduced frequency, impaired cytokine production, and impaired effector function in vivo, which can be partially restored by blocking regulatory T cells or programmed cell death ligand 1. We hypothesized that the impairment could be corrected by including sequences that created a normal priming environment by recruiting "healthy" heterologous T cells and by activating innate signaling. Endogenously expressed hepatitis B core Ag (HBcAg) can recruit heterologous T cells and activate TLR (TLR7) signaling. Hence, by combining HCV NS3/4A with different forms of HBcAg we found that heterologous sequences somewhat improved activation and expansion of NS3/4A-specific T cells in a wild-type host. Importantly, the signals provided by HBcAg effectively restored the activation of HCV-specific T cells in a tolerant NS3/4A-transgenic mouse model. The adjuvant effect could also be transferred to the priming of dysfunctional HLA-A2-restricted NS3-specific T cells in vivo. Thus, recruiting healthy heterologous T cells to the site of priming may also help restore HCV-specific responses present in a chronically infected host.  相似文献   
40.
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号