首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   21篇
  444篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   18篇
  2016年   9篇
  2015年   14篇
  2014年   9篇
  2013年   18篇
  2012年   15篇
  2011年   22篇
  2010年   5篇
  2009年   7篇
  2008年   26篇
  2007年   16篇
  2006年   16篇
  2005年   21篇
  2004年   16篇
  2003年   18篇
  2002年   18篇
  2001年   8篇
  2000年   12篇
  1999年   9篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   14篇
  1991年   8篇
  1990年   6篇
  1989年   3篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1983年   9篇
  1982年   6篇
  1981年   2篇
  1980年   7篇
  1979年   7篇
  1977年   10篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1968年   2篇
  1966年   1篇
排序方式: 共有444条查询结果,搜索用时 0 毫秒
401.
The three-dimensional structure of the purple intermediate of porcine kidney D-amino acid oxidase (DAO) was solved by cryo-X-ray crystallography; the purple intermediate is known to comprise a complex between the dehydrogenated product, an imino acid, and the reduced form of DAO. The crystalline purple intermediate was obtained by anaerobically soaking crystals of oxidized DAO in a buffer containing excess D-proline as the substrate. The dehydrogenated product, delta(1)-pyrrolidine-2-carboxylate (DPC), is found sandwiched between the phenol ring of Tyr 224 and the planar reduced flavin ring. The cationic protonated imino nitrogen is within hydrogen-bonding distance of the backbone carbonyl oxygen of Gly 313. The carboxyl group of DPC is recognized by the Arg 283 guanidino and Tyr 228 hydroxyl groups through ion-pairing and hydrogen-bonding, respectively. The (+)HN=C double bond of DPC overlaps the N(5)-C(4a) bond of reduced flavin. The electrostatic effect of the cationic nitrogen of DPC is suggested to shift the resonance hybridization of anionic reduced flavin toward a canonical form with a negative charge at C(4a), thereby augmenting the electron density at C(4a), from which electrons are transferred to molecular oxygen during reoxidation of reduced flavin. The reactivity of reduced flavin in the purple intermediate, therefore, is enhanced through the alignment of DPC with respect to reduced flavin.  相似文献   
402.
403.
alpha-1,4-Glucan lyase cleaves alpha-1,4-linkages of nonreducing termini of alpha-1,4-glucans to produce 1,5-anhydrofructose (1,5-AnFru). The enzymes isolated from fungi and algae show high homology with glycoside hydrolase family 31. Purification of alpha-1,4-glucan lyase from rat liver using DEAE Cellulose chromatography resulted in separation of two enzymatic active fractions, one was bound to the column and the other was in the flow-through. Partial amino acid sequence determined from the lyase, retained on the anion exchange column, were identical with that of the N:-linked oligosaccharide processing enzyme glucosidase II. The lyase showed similar enzymatic properties as the microsomal glucosidase such as inhibition by 1-deoxynojirimycin and castanospermine. On the other hand, glucosidase II purified from rat liver microsomes produced not only glucose but also a small amount of 1,5-AnFru using maltose as substrate. Furthermore, CHO cells overexpressing pig liver glucosidase II showed a 1.5- to 2-fold higher lyase activity compared to the nontransfected CHO cells. Conversely, no lyase activity was detectable either in PHAR2.7, the glucosidase II-deficient mutant from a mouse lymphoma cell line, or in Saccharomyces cerevisiae strain YG427 having the glucosidase II gene disrupted. These data demonstrate that glucosidase II possesses an additional enzymatic activity of releasing 1,5-AnFru from maltose.  相似文献   
404.
Acyl-CoA dehydrogenase forms a complex with a substrate analog, 3-thiaacyl-CoA, exhibiting a charge-transfer (CT) band. The structure of a complex model of oxidized lumiflavin with deprotonated 3-thiabutanoate ethylthioester designed for the above CT complex was fully optimized by means of density functional theory (DFT), the spatial arrangement being similar to the corresponding X-ray structure reported previously. The electrostatic interaction between flavin and an anionic ligand, therefore, plays a major role in determination of the arrangement of the CT complex. When the excitation energies and oscillator strengths for the optimized structures of complex models including oxidized 8-substituted lumiflavins were calculated, the obtained wavelengths correlated well with observed values reported. Subsequently, we carried out DFT calculations for new complex models redesigned for complexes of oxidized 8-substituted FADs with an anionic ligand by introducing hydrogen bonds at the carbonyl group of the ligand with the 2'-hydroxyl group of the N10-ribityl of FAD and with the main-chain amide group of Glu376. The CT absorbing wavelengths of the new complex models exhibited better correlation with those observed previously. Consequently, comparison of substituent effects on the DFT calculations for the complex models will lead to a deeper understanding of the CT interaction and the effect of the hydrogen-bonding interaction on the CT framework.  相似文献   
405.
In vertebrates, carbonic anhydrases (CAs) play important roles in ion transport and pH regulation in many organs, including the eyes, kidneys, central nervous system, and inner ear. In aquatic organisms, the enzyme is inhibited by various chemicals present in the environment, such as heavy metals, pesticides, and pharmaceuticals. In this study, the effects of CA inhibitors, i.e., sulfonamides [ethoxyzolamide (EZA), acetazolamide (AZA), and dorzolamide (DZA)], on zebrafish embryogenesis were investigated. In embryos treated with the sulfonamides, abnormal development, such as smaller otoliths, an enlarged heart, an irregular pectoral fin, and aberrant swimming behavior, was observed. Especially, the development of otoliths and locomotor activity was severely affected by all the sulfonamides, and EZA was a consistently stronger inhibitor than AZA or DZA. In the embryos treated with EZA, inner ear hair cells containing several CA isoforms, which provide HCO3 ? to the endolymph for otolith calcification and maintain an appropriate pH there, were affected. Acridine orange/ethidium bromide staining indicated that the hair cell damage in the inner ear and pectral fin is due to apoptosis. Moreover, RNA measurement demonstrated that altered gene expression of cell cycle arrest- and apoptosis-related proteins p53, p21, p27, and Bcl-2 occurred even at 0.08 ppm with which normal development was observed. This finding suggests that a low concentration of EZA may affect embryogenesis via the apoptosis pathway. Thus, our findings demonstrated the importance of potential risk assessment of CA inhibition, especially regarding the formation of otoliths as a one of the most sensitive organs in embryogenesis.  相似文献   
406.
Autonomic neurons innervate pancreatic islets of Langerhans and participate in the maintenance of blood glucose concentrations by controlling hormone levels through attachment with islet cells. We previously found that stimulated superior cervical ganglia (SCG) could induce Ca2+ oscillation in α cells via neuropeptide substance P using an in vitro co-culture model. In this study, we studied the effect of SCG neurite adhesion on intracellular secretory granule movement and glucagon secretion in α cells stimulated by low glucose concentration. Spinning disk microscopic analysis revealed that the mean velocity of intracellular granules was significantly lower in α cells attached to SCG neurites than that in those without neurites under low (2 mM), middle (10 mM), and high (20 mM) glucose concentrations. Stimulation by a low (2 mM) glucose concentration significantly increased glucagon secretion in α cells lacking neurites but not in those bound to neurites. These results suggest that adhesion to SCG neurites decreases low glucose-induced glucagon secretion in pancreatic α cells by attenuating intracellular granule movement activity.  相似文献   
407.
Previous research suggests that deficits in attention-emotion interaction are implicated in schizophrenia symptoms. Although disruption in auditory processing is crucial in the pathophysiology of schizophrenia, deficits in interaction between emotional processing of auditorily presented language stimuli and auditory attention have not yet been clarified. To address this issue, the current study used a dichotic listening task to examine 22 patients with schizophrenia and 24 age-, sex-, parental socioeconomic background-, handedness-, dexterous ear-, and intelligence quotient-matched healthy controls. The participants completed a word recognition task on the attended side in which a word with emotionally valenced content (negative/positive/neutral) was presented to one ear and a different neutral word was presented to the other ear. Participants selectively attended to either ear. In the control subjects, presentation of negative but not positive word stimuli provoked a significantly prolonged reaction time compared with presentation of neutral word stimuli. This interference effect for negative words existed whether or not subjects directed attention to the negative words. This interference effect was significantly smaller in the patients with schizophrenia than in the healthy controls. Furthermore, the smaller interference effect was significantly correlated with severe positive symptoms and delusional behavior in the patients with schizophrenia. The present findings suggest that aberrant interaction between semantic processing of negative emotional content and auditory attention plays a role in production of positive symptoms in schizophrenia. (224 words)  相似文献   
408.
Mutations in myelin genes cause inherited peripheral neuropathies that range in severity from adult-onset Charcot-Marie-Tooth disease type 1 to childhood-onset Dejerine-Sottas neuropathy and congenital hypomyelinating neuropathy. Many myelin gene mutants that cause severe disease, such as those in the myelin protein zero gene (MPZ) and the peripheral myelin protein 22 gene (PMP22), appear to make aberrant proteins that accumulate primarily within the endoplasmic reticulum (ER), resulting in Schwann cell death by apoptosis and, subsequently, peripheral neuropathy. We previously showed that curcumin supplementation could abrogate ER retention and aggregation-induced apoptosis associated with neuropathy-causing MPZ mutants. We now show reduced apoptosis after curcumin treatment of cells in tissue culture that express PMP22 mutants. Furthermore, we demonstrate that oral administration of curcumin partially mitigates the severe neuropathy phenotype of the Trembler-J mouse model in a dose-dependent manner. Administration of curcumin significantly decreases the percentage of apoptotic Schwann cells and results in increased number and size of myelinated axons in sciatic nerves, leading to improved motor performance. Our findings indicate that curcumin treatment is sufficient to relieve the toxic effect of mutant aggregation-induced apoptosis and improves the neuropathologic phenotype in an animal model of human neuropathy, suggesting a potential therapeutic role in selected forms of inherited peripheral neuropathies.  相似文献   
409.
Aprataxin is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia type 1 (EAOH/AOA1), the clinical symptoms of which are predominantly neurological. Although aprataxin has been suggested to be related to DNA single-strand break repair (SSBR), the physiological function of aprataxin remains to be elucidated. DNA single-strand breaks (SSBs) continually produced by endogenous reactive oxygen species or exogenous genotoxic agents, typically possess damaged 3′-ends including 3′-phosphate, 3′-phosphoglycolate, or 3′-α, β-unsaturated aldehyde ends. These damaged 3′-ends should be restored to 3′-hydroxyl ends for subsequent repair processes. Here we demonstrate by in vitro assay that recombinant human aprataxin specifically removes 3′-phosphoglycolate and 3′-phosphate ends at DNA 3′-ends, but not 3′-α, β-unsaturated aldehyde ends, and can act with DNA polymerase β and DNA ligase III to repair SSBs with these damaged 3′-ends. Furthermore, disease-associated mutant forms of aprataxin lack this removal activity. The findings indicate that aprataxin has an important role in SSBR, that is, it removes blocking molecules from 3′-ends, and that the accumulation of unrepaired SSBs with damaged 3′-ends underlies the pathogenesis of EAOH/AOA1. The findings will provide new insight into the mechanism underlying degeneration and DNA repair in neurons.  相似文献   
410.
The regulation of caste differentiation is essential to insect eusociality. Termite soldiers are sterile and cannot eat by themselves because they have specialized mouth morphology. Almost all termite species have a soldier caste, and the soldier ratio per colony is maintained at a low level, probably by elaborate regulatory mechanisms. Although the soldier presence is considered to negatively affect soldier differentiation in all examined species, the detailed mechanism remains unclear. Presoldier differentiation can be induced artificially by juvenile hormone (JH) application to workers, showing that JH is a key factor underlying the regulation of soldier differentiation. In this study, to elucidate physiological changes in workers because of the soldier presence during the molt into presoldiers, JH III applications and JH titer quantifications were carried out in the rhinotermitid termite Reticulitermes speratus. Firstly, the effects of soldier presence before the molt into presoldiers induced by JH III application to workers were investigated. The rates of presoldier molt induced by the treatments with soldiers were significantly lower than those without soldiers. Secondly, worker JH titers in the presence or absence of soldiers were quantified by LC-MS on day 0, 5, 10, and 15 after JH application. Results indicated that the worker JH titers (endogenous + applied JH III) in the presence of soldiers were significantly lower than those without soldiers on day 5 after the JH treatment. On days 10 and 15, such soldier effects were not observed. Finally, the effective duration of soldier presence after the JH application was elucidated. A 4 day period of co-existence with soldiers suppressed presoldier differentiation, suggesting that the soldier presence rapidly decreased the JH titer in other colony members (i.e., workers), resulting in the inhibition of presoldier production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号