首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5879篇
  免费   346篇
  6225篇
  2022年   24篇
  2021年   53篇
  2020年   30篇
  2019年   33篇
  2018年   65篇
  2017年   61篇
  2016年   90篇
  2015年   131篇
  2014年   134篇
  2013年   446篇
  2012年   243篇
  2011年   237篇
  2010年   159篇
  2009年   191篇
  2008年   301篇
  2007年   295篇
  2006年   302篇
  2005年   257篇
  2004年   301篇
  2003年   290篇
  2002年   308篇
  2001年   170篇
  2000年   165篇
  1999年   144篇
  1998年   81篇
  1997年   86篇
  1996年   91篇
  1995年   75篇
  1994年   78篇
  1993年   56篇
  1992年   121篇
  1991年   104篇
  1990年   87篇
  1989年   79篇
  1988年   82篇
  1987年   67篇
  1986年   82篇
  1985年   70篇
  1984年   79篇
  1983年   62篇
  1982年   59篇
  1981年   35篇
  1980年   46篇
  1979年   34篇
  1978年   36篇
  1977年   36篇
  1976年   27篇
  1975年   26篇
  1973年   28篇
  1971年   19篇
排序方式: 共有6225条查询结果,搜索用时 15 毫秒
61.
The short stem and midrib (ssm) mutants of Arabidopsis thaliana show both semi-dwarf and wavy leaf phenotypes due to defects in the elongation of the stem internodes and leaves. Moreover, these abnormalities cannot be recovered by exogenous phytohormones. ssm was originally identified as a single recessive mutant of the ecotype Columbia (Col-0), but genetic crossing experiments have revealed that this mutant phenotype is restored by another gene that is functional in the ecotype Landsberg erecta (Ler) and not in Col-0. Map-based cloning of the gene that is defective in ssm mutants has uncovered a small deletion in the sixth intron of a gene encoding a syntaxin, VAM3/SYP22, which has been implicated in vesicle transport to the vacuole. This mutation appears to cause a peptide insertion in the deduced VAM3/SYP22 polypeptide sequence due to defective splicing of the shortened sixth intron. Significantly, when compared with the wild-type Ler genome, the wild-type Col-0 genome has a single base pair deletion causing a frameshift mutation in SYP23, a gene with the highest known homology to VAM3/SYP22. These findings suggest that VAM3/SYP22 and SYP23 have overlapping functions and that the vesicle transport mediated by these syntaxins is important for shoot morphogenesis.  相似文献   
62.

Background and Aims

Although the advent of ultra-deep sequencing technology allows for the analysis of heretofore-undetectable minor viral mutants, a limited amount of information is currently available regarding the clinical implications of hepatitis B virus (HBV) genomic heterogeneity.

Methods

To characterize the HBV genetic heterogeneity in association with anti-viral therapy, we performed ultra-deep sequencing of full-genome HBV in the liver and serum of 19 patients with chronic viral infection, including 14 therapy-naïve and 5 nucleos(t)ide analogue(NA)-treated cases.

Results

Most genomic changes observed in viral variants were single base substitutions and were widely distributed throughout the HBV genome. Four of eight (50%) chronic therapy-naïve HBeAg-negative patients showed a relatively low prevalence of the G1896A pre-core (pre-C) mutant in the liver tissues, suggesting that other mutations were involved in their HBeAg seroconversion. Interestingly, liver tissues in 4 of 5 (80%) of the chronic NA-treated anti-HBe-positive cases had extremely low levels of the G1896A pre-C mutant (0.0%, 0.0%, 0.1%, and 1.1%), suggesting the high sensitivity of the G1896A pre-C mutant to NA. Moreover, various abundances of clones resistant to NA were common in both the liver and serum of treatment-naïve patients, and the proportion of M204VI mutants resistant to lamivudine and entecavir expanded in response to entecavir treatment in the serum of 35.7% (5/14) of patients, suggesting the putative risk of developing drug resistance to NA.

Conclusion

Our findings illustrate the strong advantage of deep sequencing on viral genome as a tool for dissecting the pathophysiology of HBV infection.  相似文献   
63.
Background/PurposeLysine-specific gingipain (Kgp) is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis), a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F). We investigated the release of K6F and its induction of cytokine secretion.MethodsK6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay.ResultsWe identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359–378), in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt.ConclusionKgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on release, induces invasion and cytokine secretion by human gingival fibroblasts. Thus, Kgp may contribute to the development of periodontal disease.  相似文献   
64.
ADP-ribosylation reaction, that is the transfer of the ADP-ribose moiety of NAD+ to acceptor protein, is catalyzed by two classes of ADP-ribosyltransferases,i.e., poly(ADP-ribose) synthetase and mono (ADP-ribosyl)transferases. These two types differ not only in the number of transferring ADP-ribose units but also in the acceptor amino acid(s) and protein. Their in hibitors, particularly those of poly(ADP-ribose) synthetase, have been successfully employed in studies on biological functions of the enzymes and other related fields of research. Recently, we found many potent and specific inhibitors of poly-(ADP-ribose) synthetase, and broadened their chemical as well as biochemical variety. More recently, we found several potent inhibitors of arginine-specific mono(ADP-ribosyl)transferases and activators of poly(ADP-ribose) synthetase.  相似文献   
65.
Unfolding rates of globular proteins determined by kinetics of proteolysis   总被引:2,自引:0,他引:2  
A convenient method for the determination of unfolding rates of small globular proteins under physiological conditions was developed using digestion with proteases. The apparent first-order rate constants for digestion of lysozyme with thermolysin and with Pronase at pH 8 and 50 degrees C were shown to be saturated with increases of concentrations of these proteases. The maximum rate constants extrapolated were identical in digestions with two different proteases, and were found to be equal to the unfolding rate constant of lysozyme. Similarly, the unfolding rate constant of RNase A at pH 8 and 50 degrees C, and those of lysozyme, RNase A and beta-lactoglobulin at pH 8 and 40 degrees C, were determined by the digestion method. Thus, it was shown that digestion by proteases proceeds mainly via the unfolded state of proteins.  相似文献   
66.
67.
Lipocalin 2, an iron-siderophore-binding protein, converts embryonic kidney mesenchyme to epithelia. We found that lipocalin 2 could also convert 4T1-Ras-transformed mesenchymal tumor cells to an epithelial phenotype, increase E-cadherin expression, and suppress cell invasiveness in vitro and tumor growth and lung metastases in vivo. The Ras-MAPK pathway mediated the epithelial to mesenchymal transition in part by increasing E-cadherin phosphorylation and degradation. Lipocalin 2 antagonized these effects at a point upstream of Raf activation. Lipocalin 2 action was enhanced by iron-siderophore. These data characterize lipocalin 2 as an epithelial inducer in Ras malignancy and a suppressor of metastasis.  相似文献   
68.
69.
70.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), are hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase. Moreover, we found another amidohydrolase catalyzing the same reaction only at acidic pH, and we purified it from rat lung (Ueda, N., Yamanaka, K., and Yamamoto, S. (2001) J. Biol. Chem. 276, 35552-35557). Here we report complementary DNA cloning and functional expression of the enzyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" from human, rat, and mouse. The deduced primary structures revealed that NAAA had no homology to fatty acid amide hydrolase but belonged to the choloylglycine hydrolase family. Human NAAA was essentially identical to a gene product that had been noted to resemble acid ceramidase but lacked ceramide hydrolyzing activity. The recombinant human NAAA overexpressed in HEK293 cells hydrolyzed various N-acylethanolamines with N-palmitoylethanolamine as the most reactive substrate. Most interestingly, a very low ceramide hydrolyzing activity was also detected with NAAA, and N-lauroylethanolamine hydrolyzing activity was observed with acid ceramidase. By the use of tunicamycin and endoglycosidase, NAAA was found to be a glycoprotein. Furthermore, the enzyme was proteolytically processed to a shorter form at pH 4.5 but not at pH 7.4. Expression analysis of a green fluorescent protein-NAAA fusion protein showed a lysosome-like distribution in HEK293 cells. The organ distribution of the messenger RNA in rats revealed its wide distribution with the highest expression in lung. These results demonstrated that NAAA is a novel N-acylethanolamine-hydrolyzing enzyme that shows structural and functional similarity to acid ceramidase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号