首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   16篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2015年   6篇
  2014年   2篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   14篇
  2007年   11篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   12篇
  2002年   11篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1967年   2篇
  1965年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
41.
42.
43.
We prepared enzymatically synthesized glycogen (ESG) with the same characteristics as natural glycogen and investigated whether the macrophage-stimulating activity of glycogen was related to Toll-like receptors (TLRs), which are important receptors for innate immunity. ESG induced no nuclear factor-kappa B (NF-κB) activity in TLR4/MD-2/CD14-expressed human embryonic kidney 293 (HEK293) reporter cells, whereas this polysaccharide did activate peritoneal exude cells (PECs) derived from TLR4-deficient mice at the same level as those from wild-type (WT) mice. Similarly, ESG did not activate HEK293 cells expressing TLR3, 5, 7, 8 or 9, suggesting that these TLRs were irrelevant to the activity of ESG. In contrast, ESG enhanced the NF-κB activity of TLR2-expressed HEK293 reporter cells in a concentration-dependent manner. Furthermore, the cell-stimulating activity of ESG was remarkably lower for PECs from TLR2-deficient mice compared with those from WT mice. The activity of ESG completely disappeared after treatment with a glycogen-degrading enzyme, indicating that the activity derived from ESG itself and not from contamination with canonical TLR2 ligands such as bacterial lipopeptides. Moreover, it was clarified by ELISA that ESG was directly bound to TLR2. Taken together, these results demonstrated that TLR2 directly recognizes glycogen and that the recognition activates immunocytes such as macrophages to enhance the production of nitric oxide and inflammatory cytokines. In addition, it was suggested that TLR2 could be involved in the glycogen activity in vivo. We propose that glycogen act as an activator to potentiate the host defense through TLR2 on the macrophage.  相似文献   
44.
The stratified squamous epithelia differ regionally in their patterns of morphogenesis and differentiation. Although some reports suggested that the adult epithelial phenotype is an intrinsic property of the epithelium, there is increasing evidence that subepithelial connective tissue can modify the phenotypic expression of the epithelium. The aim of this study was to elucidate whether the differentiation of cutaneous and oral epithelia is influenced by underlying mesenchymal tissues. Three normal skin samples and three normal buccal mucosa samples were used for the experiments. Skin equivalents were constructed in four ways, depending on the combinations of keratinocytes (cutaneous or mucosal keratinocytes) and fibroblasts (dermal or mucosal fibroblasts), and the effects of subepithelial fibroblasts on the differentiation of oral and cutaneous keratinocytes were studied with histological examinations and immunohistochemical analyses with anti-cytokeratin (keratins 10 and 13) antibodies. For each experiment, three paired skin equivalents were constructed by using single parent keratinocyte and fibroblast sources for each group; consequently, nine (3 x 3) organotypic cultures per group were constructed and studied. The oral and cutaneous epithelial cells maintained their intrinsic keratin expression. The keratin expression patterns in oral and cutaneous epithelia of skin equivalents were generally similar to their original patterns but were partly modified exogenously by the topologically different fibroblasts. The mucosal keratinocytes were more differentiated and expressed keratin 10 when cocultured with dermal fibroblasts, and the expression patterns of keratin 13 in cutaneous keratinocytes cocultured with mucosal fibroblasts were different from those in keratinocytes cocultured with cutaneous fibroblasts. The results suggested that the epithelial phenotype and keratin expression could be extrinsically modified by mesenchymal fibroblasts. In epithelial differentiation, however, the intrinsic control by epithelial cells may still be stronger than extrinsic regulation by mesenchymal fibroblasts.  相似文献   
45.
Prosthetic rehabilitation is essential for maintaining postoperative oral function after maxillary reconstruction. However, the maxillary prosthesis becomes unstable in some patients because of extensive palatomaxillary resection and drooping of the transferred flap. In such patients, maintaining sufficient oral function is difficult, especially if the patient is edentulous. To achieve prosthetic retention, the authors performed microvascular maxillary reconstruction with a slit-shaped fenestration in the midline of the hard palate. Maxillary defects after subtotal or total maxillectomy were reconstructed with rectus abdominis musculocutaneous flaps in five patients. Defects of the nasal lining and palate were reconstructed with the single cutaneous portion of the flap, and a slit-shaped fenestration was left between the cutaneous portion of the flap and the edge of the remaining hard palate. Postoperatively, patients were fitted with maxillary prostheses that had a flat projection for the palatal fenestration. In all patients, the prosthesis was stable enough for mastication and prevented nasal regurgitation. Speech function was rated as excellent on Hirose's scoring system for Japanese speech ability. The authors believe that their method of palatomaxillary reconstruction is both simple and reliable.  相似文献   
46.
47.
A new way of producing isomalto-oligosaccharide syrup from starch was developed. Isomalto-oligosaccharides contain one or more α-(1→6)-glucosidic linkages with or without α-(1→4)-glucosidic linkages. The isomalto-oligosaccharide syrups are receiving increased attention as food additives because it is thought that they help prevent dental caries and improve human intestinal microflora, acting as a growth factor for bifidobacteria. The new system for production of isomalto-oligosaccharide syrup is based on the strong α-(1→6)-transglycosylation reaction of neopullulanase. Bacillus subtilis saccharifying α-amylase was simultaneously used with neopullulanase to improve the yield of isomalto-oligosaccharides. The yield of isomalto-oligosaccharides was increased to more than 60%, compared with a yield of 45.0% obtained by the conventional system. To reduce the costs, the use of immobilized neopullulanase was investigated. Almost the same yield of isomalto-oligosaccharides was obtained by using immobilized neopullulanase.  相似文献   
48.
Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature for activity was around 50 degrees C. The enzyme was stable in the range of pH 7.5 to 9.5, and the optimum pH was 7.5. The nucleotide sequence of the gene was determined, and the active center of the enzyme was analyzed by means of site-directed mutagenesis. The catalytic residues were tentatively identified as two Asp residues and a Glu residue by comparison of the amino acid sequences of various branching enzymes from different sources and enzymes of the alpha-amylase family. When the Asp residues and Glu were replaced by Asn and Gln, respectively, the branching enzyme activities disappeared. The results suggested that these three residues are the catalytic residues and that the catalytic mechanism of the branching enzyme is basically identical to that of alpha-amylase. On the basis of these results, four conserved regions including catalytic residues and most of the substrate-binding residues of various branching enzymes are proposed.  相似文献   
49.
Y Kuriki  E Racker 《Biochemistry》1976,15(23):4951-4956
The bioflavonoid, quercetin, inhibited the (Na+, K+)adenosine triphosphatase purified from the electric organ of electric eel (Electrophorus electricus) or from lamb kidney. An analysis of its mode of action revealed that the formation of phosphoenzyme from Pi but not from ATP was inhibited. Quercetin increased the amount of ADP-sensitive phosphoenzyme (E1--P), indicating an inhibition of the conversion of E1--P to the ADP-insensitive form (E2--P). The rate of dephosphorylation of the phosphoenzyme formed from ATP was slowed by quercetin. These results suggest that quercetin inhibits the formation of E2--P from either Pi or E1-P as well as the hydrolysis of the phosphoenzyme. Its mode of action is therefore different from that of ouabain and other inhibitors of the Na+, K+)adenosine triphosphatase.  相似文献   
50.
Y Kuriki  J Halsey  R Biltonen  E Racker 《Biochemistry》1976,15(23):4956-4961
The phosphorylation of (Na+, K+)ATPase from the electric organ of the electric eel is dependent on Mg2+. The amount of phosphoenzyme formed was increased by K+ and decreased by Na+. Kinetic analyses indicate that a ternary complex of ATPase, Pi and Mg2+ is formed prior to phosphorylation of the protein. Calorimetric studies revealed extraordinarily large enthalpy changes associated with the binding of Mg2+ (-49 kcal/mol) and of Pi (-42 kcal/mol), indicating a thermodynamically significant conformational change in the enzyme. The dissociation constant for the binding of Mg2+ and Pi derived from calorimetric measurements is in good agreement with the value obtained from the kinetic studies. These results indicate that ion binding induces a conformational change in the enzyme which is a prerequisite for phosphorylation by Pi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号