首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   17篇
  2021年   2篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   8篇
  2013年   25篇
  2012年   23篇
  2011年   21篇
  2010年   8篇
  2009年   7篇
  2008年   11篇
  2007年   15篇
  2006年   17篇
  2005年   13篇
  2004年   17篇
  2003年   17篇
  2002年   22篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   8篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
91.
Male juvenile spermatogonial depletion (jsd/jsd) mice are sterile because of a failure of spermatogonial differentiation. We have previously reported the recovery of spermatogonial differentiation by suppressing the levels of gonadotropins and testosterone with Nal-Glu, a GnRH antagonist. To determine whether suppression of testosterone or the gonadotropins was responsible for spermatogenic recovery, we examined the effect of supplementation of LH or FSH along with Nal-Glu treatment. Systemic administration of flutamide, an androgen receptor antagonist, was also examined. LH supplementation elevated both serum and intratesticular testosterone levels and suppressed the recovery of spermatogonial differentiation in a dose-dependent manner. Supplementation with FSH did not affect either testosterone levels or spermatogonial differentiation. Furthermore, the mice treated with flutamide showed some recovery of spermatogonial differentiation. The overall findings revealed that testosterone action mediated by androgen receptors suppressed the spermatogonial differentiation in jsd/jsd mice and suggested that spermatogonial differentiation in the jsd mutant is highly sensitive to testosterone suppression.  相似文献   
92.
93.
The proliferating cell nuclear antigen (PCNA) is now recognized as one of the key proteins in DNA metabolic events because of its direct interactions with many proteins involved in important cellular processes. We have determined the crystal structure of PCNA from a hyperthermophilic archaeon, Pyrococcus furiosus (pfuPCNA), at 2.1 A resolution. pfuPCNA forms a toroidal, ring-shaped structure consisting of homotrimeric molecules, which is also observed in the PCNA crystals from human and yeast. The overall structure of pfuPCNA is highly conserved with other PCNA proteins, as well as with the bacterial ss clamp and the bacteriophage gp45. This result shows that the three-dimensional structure of the sliding clamp is conserved in the three domains of life. pfuPCNA has two remarkable features compared with the human and yeast PCNA molecules: it has more ion pairs and fewer intermolecular main chain hydrogen bonds. The former may contribute to the thermal stability of pfuPCNA, and the latter may be the cause of the stimulatory effect of pfuPCNA on the DNA synthesizing activity of P. furiosus DNA polymerases in the absence of the clamp loader replication factor C in vitro.  相似文献   
94.
For the pyrochemical reprocessing of spent metallic fuels in molten salt baths it is of importance to investigate the electronic and dynamic properties of the negative elements like Cs in aluminosilicates framework. The molecular orbital simulation has been performed on three types of clusters and 4A-zeolite frameworks with exchangeable alkali-ions containing as significant fission products in order to estimate the geometry optimization, the vibrational frequency factors and the electric densities, etc. These quantum chemical results enable us to conclude that the most stable structure is consistent with the X-ray results. Moreover, the obtained infrared spectrum was reproduced by the experimental results. Furthermore, the molecular dynamics simulation for Na-A and Cs-A zeolites has been carried out at 673 K in order to investigate the dynamics of Na+ and Cs+ions in Na-A and Cs-A zeolite frameworks. These results revealed that Na I ion in β-cage was more stable than the other Na ions in Na-A zeolite and Cs I ion in α-cage was maintained stability in Cs-A zeolite in consideration of the self-diffusion coefficients.  相似文献   
95.

Objective

To compare the association of elastin (ELN) gene variants between two different angiographic phenotypes of polypoidal choroidal vasculopathy (PCV).

Methods

We included 411 treatment-naïve PCV patients and 350 controls in the present study. PCV was classified into two phenotypes (152 Type 1 and 259 Type 2) according to the presence or absence of feeding vessels found in indocyanine-green angiography. Single nucleotide polymorphisms (SNPs) in the ELN region including rs868005, rs884843, rs2301995, rs13239907 and rs2856728 were genotyped using TaqMan Genotyping Assays.

Results

In the allelic association analyses, rs868005 showed the strongest association with Type 2 PCV (allelic odds ratio 1.56; p = 7.4x10-6), while no SNP was significantly associated with Type 1 PCV. Genotype association analyses revealed the significant association of rs868005 with Type 2 PCV in log additive model and predominant model (odds ratio 1.75; p = 1.5x10-6 and odds ratio 1.60; p = 0.0044, respectively), but not with Type 1 PCV. These findings were further corroborated by another control group in the literature.

Conclusions

There may be significantly different associations in genetic variants of elastin between two angiographic phenotypes of PCV.  相似文献   
96.
97.
Recent extensive studies have revealed that molecular hydrogen (H(2)) has great potential for improving oxidative stress-related diseases by inhaling H(2) gas, injecting saline with dissolved H(2), or drinking water with dissolved H(2) (H(2)-water); however, little is known about the dynamic movement of H(2) in a body. First, we show that hepatic glycogen accumulates H(2) after oral administration of H(2)-water, explaining why consumption of even a small amount of H(2) over a short span time efficiently improves various disease models. This finding was supported by an in vitro experiment in which glycogen solution maintained H(2). Next, we examined the benefit of ad libitum drinking H(2)-water to type 2 diabetes using db/db obesity model mice lacking the functional leptin receptor. Drinking H(2)-water reduced hepatic oxidative stress, and significantly alleviated fatty liver in db/db mice as well as high fat-diet-induced fatty liver in wild-type mice. Long-term drinking H(2)-water significantly controlled fat and body weights, despite no increase in consumption of diet and water. Moreover, drinking H(2)-water decreased levels of plasma glucose, insulin, and triglyceride, the effect of which on hyperglycemia was similar to diet restriction. To examine how drinking H(2)-water improves obesity and metabolic parameters at the molecular level, we examined gene-expression profiles, and found enhanced expression of a hepatic hormone, fibroblast growth factor 21 (FGF21), which functions to enhance fatty acid and glucose expenditure. Indeed, H(2) stimulated energy metabolism as measured by oxygen consumption. The present results suggest the potential benefit of H(2) in improving obesity, diabetes, and metabolic syndrome.  相似文献   
98.
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/-) cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/-) cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/-) cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/-) cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.  相似文献   
99.
100.

Background and aims

We sought to understand the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site.

Methods

Saltcedar leaf-level transpiration (EL), LAI, and stomatal conductance (GS) were measured over a growing season (June–September) with Granier and stem heat balance sensors and were compared to those for saltcedar at the non-stress site determined in a previous study. Transpiration on a ground-area basis (EG) was calculated as EL?×?LAI. Environmental factors were regressed against hourly and daily EL and GS at each site to determine the main factors controlling water use at each site.

Results

At the stress site, mean EG over the summer was only 30 % of potential evapotranspiration (ETo). GS and EG peaked between 8 and 9 am then decreased over the daylight hours. Daytime GS was negatively correlated with vapor pressure deficit (VPD) (P?<?0.05). By contrast, EG at the non-stress site tracked the daily radiation curve, was positively correlated with VPD and was nearly equal to ETo on a daily basis. Depth to groundwater increased over the growing season at both sites and resulted in decreasing EG but could not explain the difference between sites. Both sites had high soil moisture levels throughout the vadose zone with high calculated unsaturated conductivity. However, salinity in the aquifer and vadose zone was three times higher at the stress site than at the non-stress site and could explain differences in plant EG and GS.

Conclusions

Salts accumulated in the vadose zone at both sites so usable water was confined to the saturated capillary fringe above the aquifer. Existence of a saline aquifer imposes several types of constraints on phreatophyte EG, which need to be considered in models of plant water uptake. The heterogeneous nature of saltcedar EG over river terraces introduces potential errors into estimates of ET by wide-area methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号