首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   10篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   22篇
  2012年   17篇
  2011年   17篇
  2010年   12篇
  2009年   6篇
  2008年   14篇
  2007年   11篇
  2006年   11篇
  2005年   15篇
  2004年   17篇
  2003年   7篇
  2002年   14篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有259条查询结果,搜索用时 234 毫秒
141.
142.
143.
144.
Inositol 1,4,5-trisphosphate (IP(3)) is an important second messenger that releases intracellular Ca(2+) by binding to its specific receptor, inositol 1,4,5-trisphosphate receptor (IP(3)R), in a wide range of cellular processes. We report here large-scale expression and purification of N-terminal 604 amino acids of IP(3)R type 1 (T604) expressed in E. coli, which contains the ligand binding domain. Surface plasmon resonance biosensor studies showed that purified T604 could bind to its ligands with binding specificity identical to that of full-length native IP(3)R type 1. Kinetic parameters of T604 for IP(3) consisted of a fast association rate constant (K(ass) = 1.2 x 10(6) M(-1) s(-1)) and a rapid dissociation rate constant (k(diss) = 1 s(-1)), and the equilibrium dissociation constant was determined to be 336 nM, at 150 mM NaCl and pH 7.4. However, association and dissociation patterns depended on the pH level and ionic strength. These results pave the way toward detail analysis of structure-function analysis of the ligand binding domain of IP(3)R type 1 for its ligands.  相似文献   
145.
Spatiotemporally restricted gene targeting is needed for analyzing the functions of various molecules in a variety of biological phenomena. We have generated an inducible cerebellar Purkinje cell-specific gene targeting system. This was achieved by establishing a mutant mouse line (D2CPR) from a C57BL/6 mouse ES cell line, which expressed a fusion protein consisting of the Cre recombinase and the progesterone receptor (CrePR). The Purkinje cell-specific expression of CrePR was attained by inserting CrePR into the glutamate receptor delta2 subunit (GluRdelta2) gene, which was expressed specifically in the Purkinje cells. Using the transgenic mice carrying the Cre-mediated reporter gene, we showed that the antiprogesterone RU486 could induce recombinase activity of the CrePR protein specifically in the mature cerebellar Purkinje cells of the D2CPR line. Thus this mutant line will be a useful tool for studying the molecular function of mature Purkinje cells by manipulating gene expression in a temporally restricted manner.  相似文献   
146.
147.
AMP-activated protein kinase (AMPK) is currently known to act as a key regulator of metabolic homeostasis. Several biosynthetic enzymes for fatty acid or glycogen are recognized as the targets of AMPK. In the present study, we investigated the role of AMPK in the interleukin-1 (IL-1)-stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. IL-1 induced phosphorylation of AMPK-α (Thr-172), which regulates AMPK activities, and acetyl-CoA carboxylase, a direct substrate of AMPK. Compound C, an inhibitor of AMPK, which suppressed the IL-1-induced phosphorylation of acetyl-CoA carboxylase, increased the release and the mRNA level of IL-6 stimulated by IL-1. Transfection of AMPK siRNA-α also amplified the IL-1-stimulated IL-6 release compared to the control cells. On the other hand, IL-1 elicited the phosphorylation of IκB, which caused subsequent decrease of total level of IκB. Wedelolactone, an inhibitor of IκB kinase, which reduced the phosphorylation both of IκB and NF-κB, significantly enhanced the IL-1-stimulated IL-6 synthesis. Compound C remarkably suppressed the IL-1-induced phosphorylation of IκB. These results strongly suggest that AMPK negatively regulates IL-1-stimulated IL-6 synthesis through the IκB/NF-κB pathway in osteoblasts.  相似文献   
148.
The Arc/Arg3.1 gene product is rapidly upregulated by strong synaptic activity and critically contributes to weakening synapses by promoting AMPA-R endocytosis. However, how activity-induced Arc is redistributed and determines the synapses to be weakened remains unclear. Here, we show targeting of Arc to inactive synapses via a high-affinity interaction with CaMKIIβ that is not bound to calmodulin. Synaptic Arc accumulates in inactive synapses that previously experienced strong activation and correlates with removal of surface GluA1 from individual synapses. A lack of CaMKIIβ either in vitro or in vivo resulted in loss of Arc upregulation in the silenced synapses. The discovery of Arc's role in "inverse" synaptic tagging that is specific for weaker synapses and prevents undesired enhancement of weak synapses in potentiated neurons reconciles essential roles of Arc both for the late phase of long-term plasticity and for reduction of surface AMPA-Rs in stimulated neurons.  相似文献   
149.
150.
Contemporary crop improvement relies on the genetic analysis of progeny derived from a cross between different lines with contrasting phenotypes. Such analysis allowed positioning of genes for agronomically important traits, enabling development of DNA makers for marker-assisted selection (MAS). So far the identification of loci for desirable traits have been carried out by linkage analysis using DNA markers. This process required the development of DNA markers that are distributed over the genome as well as the genotyping of each progeny. Due to recent development in next generation sequencing (NGS) technology, whole genome sequencing (WGS) is becoming easier and cheaper. Using NGS, we developed a new method called MutMap that allows rapid isolation of useful alleles from rice mutant lines. An important feature of MutMap is that it does not require marker development. We foresee that the era of genetic markers will be eventually eclipsed by that of WGS applied to all the individuals in the breeding processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号