首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   0篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   9篇
  2003年   12篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
51.
One of the characteristics of polycystic ovary syndrome (PCOS) is the presence of cystic follicles in various stages of growth and atresia, the latter of which is known to be the result of apoptosis and tissue remodeling. To further investigate the process of follicular atresia, we compared ovarian expression and localization of Fas, Fas ligand (FasL), casapse-8 and membrane-type1 matrix metalloproteinase (MT1-MMP) in rats treated with dehydroepiandrosterone (DHEA) as a model of PCOS, and in control rats. We found that the numbers of TdT-mediated dUTP-biotin nick end-labeling (TUNEL)-positive follicles were significantly higher in ovaries from PCOS rats than in those from control rats (P < 0.05), as were ovarian levels of FasL mRNA and protein, processed caspase-8 protein and MT1-MMP mRNA. Correspondingly, we also observed an increase in the level of MTI-MMP catalytic activity and a decrease in the level of pro-caspase-8 protein. In addition, immunohistochemical analyses showed that MT1-MMP and FasL co-localize with TUNEL-positive apoptotic granulosa cells within atretic follicles of PCOS ovaries. Our results suggest that under the PCOS-like conditions induced by DHEA, the Fas/FasL/Caspase-8 (death receptor dependent) pathway is pivotal for follicular atresia, and that increased levels of MT1-MMP likely play an important role in tissue remodeling during structural luteolysis.  相似文献   
52.
53.
We found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively. To examine the effect of the modification of the heme-protein contact on the structure and function of Hb A, we compared the 1H NMR, CD, and oxygen binding properties of the three components with those of native Hb A. Native Hb A exhibits a distinct positive CD band in both the near-UV and Soret regions, but rHb A with reversed heme exhibits a very weak positive CD band at 260 nm and a prominent negative CD band in the Soret region. Cooperativity, as measured by Hill's n value, decreased from 3.18 (SP-1) to 2.94 (SP-2) to 2.63 (SP-3) with an increase in the reversed heme orientation. The effect of an allosteric effector, inositol hexaphosphate (IHP), on the oxygen binding properties was also reduced in rHb A with reversed heme. These results indicate that changes in the heme-globin contact exert a discernible influence on CD spectra and cooperative oxygen binding.  相似文献   
54.
55.
Overexpression of an anti-apoptotic protein cIAP1 caused by its genetic amplification was reported in certain cancers, such as hepatocellular carcinoma, esophageal squamous cell carcinoma, cervical cancer, and lung cancer, which confers resistance to chemotherapy and radiotherapy. Here we report cIAP1 to be selectively down-regulated by a class of small molecules ((-)-N-[(2S,3R)-3-amino-2-hydroxy-4-phenyl-butyryl]-l-leucine methyl ester (ME-BS)), resulting in a sensitization of cancer cells to apoptosis. ME-BS directly interacts with the BIR3 domain of cIAP1, promotes auto-ubiquitylation dependent on its RING domain, and facilitates proteasomal degradation of cIAP1. Other IAPs such as XIAP and cIAP2 were not affected by ME-BS. These results suggest targeted destabilization of cIAP1 by small molecules as a novel method to treat cancers expressing cIAP1, which interferes with treatment. Manipulation of the intrinsic ubiquitin-ligase activity could be a novel strategy to develop small molecules for therapeutic purposes.  相似文献   
56.
The cytotoxic effects of platinum (Pt) were studied by intraparenchymal injection of 1 mg of cisplatin (CDDP) in male rabbits. Time-serial plasma Pt levels were used as CDDP clearance indices in brain and kidney tissues. The tissue samples were also examined histologically. Changes in the blood-brain barrier (BBB) were evaluated by horseradish peroxidase (HRP) extravasation. In the brain infusion group, Pt was detected in the plasma 30 min after the start of infusion. In the kidney, Pt was detected after 10 min of CDDP injection. The maximum plasma concentration of Pt in the brain group showed diffuse edema, neuronal necrosis, karyolysis, and HRP extravasation around the injection site. In contrast, the histological damage to kidneys was minimal. The results presented here show that direct infusion of CDDP caused the most extensive cytotoxicity in the brain. The low clearance rate of CDDP from the brain and BBB disruption may explain this behavior.  相似文献   
57.
Nine diacylglycerol kinase (DGK) isozymes have been identified. However, our knowledge of their individual functions is still limited. Here, we demonstrate the role of DGKgamma in regulating Rac1-governed cell morphology. We found that the expression of kinase-dead DGKgamma, which acts as a dominant-negative mutant, and inhibition of endogenous DGKgamma activity with R59949 induced lamellipodium and membrane ruffle formation in NIH3T3 fibroblasts in the absence of growth factor stimulation. Reciprocally, lamellipodium formation induced by platelet-derived growth factor was significantly inhibited upon expression of constitutively active DGKgamma. Moreover, the constitutively active DGKgamma mutant suppressed integrin-mediated cell spreading. These effects are isoform-specific because, in the same experiments, none of the corresponding mutants of DGKalpha and DGKbeta, closely related isoforms, affected cell morphology. These results suggest that DGKgamma specifically participates in the Rac1-mediated signaling pathway leading to cytoskeletal reorganization. In support of this, DGKgamma co-localized with dominant-active Rac1 especially in lamellipodia. Moreover, we found that endogenous DGKgamma was physically associated with cellular Rac1. Dominant-negative Rac1 expression blocked the lamellipodium formation induced by kinase-dead DGKgamma, indicating that DGKgamma acts upstream of Rac1. This model is supported by studies demonstrating that kinase-dead DGKgamma selectively activated Rac1, but not Cdc42. Taken together, these results strongly suggest that DGKgamma functions through its catalytic action as an upstream suppressor of Rac1 and, consequently, lamellipodium/ruffle formation.  相似文献   
58.
Diacylglycerol kinase (DGK) participates in regulating the intracellular concentrations of two bioactive lipids, diacylglycerol and phosphatidic acid. DGK eta (eta 1, 128 kDa) is a type II isozyme containing a pleckstrin homology domain at the amino terminus. Here we identified another DGK eta isoform (eta 2, 135 kDa) that shared the same sequence with DGK eta 1 except for a sterile alpha motif (SAM) domain added at the carboxyl terminus. The DGK eta 1 mRNA was ubiquitously distributed in various tissues, whereas the DGK eta 2 mRNA was detected only in testis, kidney, and colon. The expression of DGK eta 2 was suppressed by glucocorticoid in contrast to the marked induction of DGK eta 1. DGK eta 2 was shown to form through its SAM domain homo-oligomers as well as hetero-oligomers with other SAM-containing DGKs (delta 1 and delta 2). Interestingly, DGK eta 1 and DGK eta 2 were rapidly translocated from the cytoplasm to endosomes in response to stress stimuli. In this case, DGK eta 1 was rapidly relocated back to the cytoplasm upon removal of stress stimuli, whereas DGK eta 2 exhibited sustained endosomal association. The experiments using DGK eta mutants suggested that the oligomerization of DGK eta 2 mediated by its SAM domain was largely responsible for its sustained endosomal localization. Similarly, the oligomerization of DGK eta 2 was suggested to result in negative regulation of its catalytic activity. Taken together, alternative splicing of the human DGK eta gene generates at least two isoforms with distinct biochemical and cell biological properties responding to different cellular metabolic requirements.  相似文献   
59.
Tumor necrosis factor alpha (TNF-alpha) modulates various events through several different pathways. Many tumor cells are resistant to this cytokine. Pretreatment of these cells with actinomycin D enhances TNF-alpha-induced apoptosis. In the present study, we investigated the mechanism of this enhancement and whether or not the apoptosis of TNF-alpha-resistant cancer cells can be induced by the inhibition of Protein kinase C (PKC). When TNF-alpha was added after inhibition of PKC by H7, apoptosis was observed, and companied with the activation of nuclear factor kappa B (NF-kappaB). After the inhibition of protein kinase B (Akt) by LY294002 or p38 mitogen-activated protein kinase (p38MAPK) by SB203580, the addition of TNF-alpha did not cause apoptosis. However, after the inhibition of MAPK/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) with U0126, apoptosis was observed when TNF-alpha was added. In the Western blotting analysis, phosphorylation of MEK1/2 occurred at 60 minutes after the addition of TNF-alpha. However, it was noted that after pretreatment with H7, a significant decrease in phosphorylated MEK1/2 was observed. The present findings suggest that MEK1/2 plays an important role in TNF-alpha-resistance in TNF-alpha-resistant B16 melanoma BL6 cells. Furthermore, it was found that MEK1/2 is more important than NF-kappaB, Akt, and p38MAPK in anti-apoptotic PKC signaling and that TNF-alpha-resistance can be overcome by inhibiting MEK1/2. These results suggest the possibility of development of a new anticancer drug treatment.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号