首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   3篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   14篇
  2012年   19篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   10篇
  2007年   18篇
  2006年   11篇
  2005年   10篇
  2004年   10篇
  2003年   11篇
  2002年   13篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
81.
Gene phlG encoding 2,4-diacetylphloroglucinol hydrolase was cloned from Pseudomonas sp. YGJ3 and expressed in Escherichia coli. Recombinant PhlG was purified homogeneously. It required 2-mercaptoethanol for stability. Km for 2,4-diacetylphloroglucinol and kcat were determined to be 24 μM and 5.8 s(-1) respectively. CoCl2 specifically and significantly activated PhlG.  相似文献   
82.
We developed a method to insert multiple desired genes into target loci on the Escherichia coli chromosome. The method was based on Red-mediated recombination, flippase and the flippase recognition target recombination, and P1 transduction. Using this method, six copies of the lacZ gene could be simultaneously inserted into different loci on the E. coli chromosome. The inserted lacZ genes were functionally expressed, and β-galactosidase activity increased in proportion to the number of inserted lacZ genes. This method was also used for metabolic engineering to generate overproducers of aromatic compounds. Important genes of the shikimate pathway (aroF fbr and tyrA fbr or aroF fbr and pheA fbr ) were introduced into the chromosome to generate a tyrosine or a phenylalanine overproducer. Moreover, a heterologous decarboxylase gene was introduced into the chromosome of the tyrosine or phenylalanine overproducer to generate a tyramine or a phenethylamine overproducer, respectively. The resultant strains selectively overproduced the target aromatic compounds. Thus, the developed method is a convenient tool for the metabolic engineering of E. coli for the production of valuable compounds.  相似文献   
83.
We have previously demonstrated that repeated, but not acute, methamphetamine (METH) treatment increases tissue plasminogen activator (tPA) activity in the brain, which is associated with the development of behavioral sensitization to METH. In this study, we investigated whether the tPA-plasmin system is involved in the development of sensitization in METH-induced dopamine release in the nucleus accumbens (NAc). There was no difference in acute METH-induced increase in extracellular dopamine levels in the NAc between wild-type and tPA-deficient (tPA−/−) mice. Repeated METH treatment resulted in a significant enhancement of METH- induced dopamine release in wild-type mice, but not tPA−/− mice. Microinjection of exogenous tPA or plasmin into the NAc of wild-type mice significantly potentiated acute METH- induced dopamine release. Degradation of laminin was evident in brain tissues incubated with tPA plus plasminogen or plasmin in vitro although tPA or plasminogen alone had no effect. Immunohistochemical analysis revealed that microinjection of plasmin into the NAc reduced laminin immunoreactivity without neuronal damage. Our findings suggest that the tPA-plasmin system participates in the development of behavioral sensitization induced by repeated METH treatment, by regulating the processes underlying the sensitization of METH-induced dopamine release in the NAc, in which degradation of laminin by plasmin may play a role.  相似文献   
84.
Post-traumatic stress disorder is a long-lasting psychiatric disease after the traumatic experience of severe fatal stress with the consequence of hippocampal atrophy. Freezing behaviors were more than quintupled on the fear-conditioning test in mice previously subjected to water immersion restrain stress (WIRS) with metronome tones when determined 1–28 days after WIRS, while these mice exhibited the increased immobility time on the forced swimming test with the increased spontaneous locomotion. Prior experience of WIRS led to a transient decrease in subsequent 5-bromo-2'-deoxyuridine (BrdU) incorporation into proliferating cells in the hippocampal dentate gyrus. These behavioral and neurochemical alterations were significantly prevented by the daily injection of the tricyclic antidepressant imipramine and the selective serotonin reuptake inhibitor fluvoxamine, respectively. Moreover, WIRS significantly decreased the number of cells holding BrdU without affecting the differentiation ratio to astroglial and neuronal lineages 28 days later. Prior administration of an NMDA receptor antagonist significantly prevented the aforementioned changes by WIRS. These results suggest that NMDA receptors may play a role in mechanisms underlying the crisis of a variety of psychiatric symptoms relevant to post-traumatic stress disorder through transient suppression of neural progenitor cell proliferation in the murine hippocampal dentate gyrus.  相似文献   
85.
Transglutaminase 1 (TGase 1) is an essential enzyme for cornified envelope formation in stratified squamous epithelia. This enzyme catalyzes the cross-linking of glutamine and lysine residues in structural proteins in differentiating keratinocytes. To gain insight into the preferred substrate structure of TGase 1, we used a phage-displayed random peptide library to screen primary amino acid sequences that are preferentially selected by human TGase 1. The peptides selected as glutamine donor substrate exhibited a marked tendency in primary structure, conforming to the sequence: QxK/RpsixxxWP (where x and psi represent non-conserved and hydrophobic amino acids, respectively). Using glutathione S-transferase (GST) fusion proteins of the selected peptides, we identified several sequences as preferred substrates and confirmed that they were isozyme-specific. We generated GST-fused alanine mutants of the most reactive sequence (K5) to determine the residues that were critical for reactivity. Even in peptide form, K5 appeared to have high and specific reactivity as substrate. In situ analysis of mouse skin sections using fluorescence-conjugated K5 peptide resulted in detection of TGase 1 activity with high sensitivity, but no signal was detected in a TGase 1-null mouse. In conclusion, we were successful in generating a novel substrate peptide for sensitive detection of endogenous TGase 1 activity in the skin.  相似文献   
86.
87.
Inversin (Inv), a protein that contains ankyrin repeats, plays a key role in left-right determination during mammalian embryonic development, but its precise function remains unknown. Transgenic mice expressing an Inv and green fluorescent protein (GFP) fusion construct (Inv::GFP) were established to facilitate characterization of the subcellular localization of Inv. The Inv::GFP transgene rescued the laterality defects and polycystic kidney disease of Inv/Inv mice, indicating that the fusion protein is functional. In transgenic embryos, Inv::GFP protein was detected in the node monocilia. The fusion protein was also present in other 9+0 monocilia, including those of kidney epithelial cells and the pituitary gland, but it was not localized to 9+2 cilia. The N-terminal region of Inv (InvDeltaC) including the ankyrin repeats also localized to the node cilia and rescued the left-right defects of Inv/Inv mutants. Although no obvious abnormalities were detected in the node monocilia of Inv/Inv embryos, the laterality defects of such embryos were corrected by an artificial leftward flow of fluid in the node, suggesting that nodal flow is impaired by the Inv mutation. These results suggest that the Inv protein contributes to left-right determination as a component of monocilia in the node and is essential for the generation of normal nodal flow.  相似文献   
88.
The generation of morphological, such as left-right, asymmetry during development is an integral part of the establishment of a body plan. Until recently, the molecular basis of left-right asymmetry was a mystery, but studies indicate that Nodal and the Lefty proteins, transforming growth factor-beta-related molecules, have a central role in generating asymmetric signals. Although the initial mechanism of symmetry breaking remains unknown, developmental biologists are beginning to analyse the pathway that leads to left-right asymmetry establishment and maintenance.  相似文献   
89.
90.
Exogenous retinoic acid (RA) induces marked effects on limb patterning, but the precise role of endogenous RA in this process has remained unknown. We have studied the role of RA in mouse limb development by focusing on CYP26B1, a cytochrome P450 enzyme that inactivates RA. Cyp26b1 was shown to be expressed in the distal region of the developing limb bud, and mice that lack CYP26B1 exhibited severe limb malformation (meromelia). The lack of CYP26B1 resulted in spreading of the RA signal toward the distal end of the developing limb and induced proximodistal patterning defects characterized by expansion of proximal identity and restriction of distal identity. CYP26B1 deficiency also induced pronounced apoptosis in the developing limb and delayed chondrocyte maturation. Wild-type embryos exposed to excess RA phenocopied the limb defects of Cyp26b1(-/-) mice. These observations suggest that RA acts as a morphogen to determine proximodistal identity, and that CYP26B1 prevents apoptosis and promotes chondrocyte maturation, in the developing limb.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号