首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   10篇
  2003年   8篇
  2002年   11篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1976年   2篇
  1970年   2篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
71.
The interconversion between variotin and ketovariotin is described.  相似文献   
72.
73.

Background

Zucker fatty (fa/fa) rats are a well-understood model of obesity and hyperinsulinemia. It is now thought that obesity/hyperinsulinemia is an important cause of endocrinological abnormality, but to date there have been no reports on the changes in ovarian morphology or the ovarian androgen profile in rat models of obesity and insulin resistance.

Methods

In this study we investigated the effects of obesity and hyperinsulinemia on ovarian morphology and the hormone profile in insulin-resistant Zucker fatty rats (5, 8, 12 and 16 weeks of age, n = 6-7).

Results

Ovaries from 5-week-old fatty rats had significantly greater total and atretic follicle numbers, and higher atretic-to-total follicle ratios than those from lean rats. Ovaries from 12- and 16-week-old fatty rats showed interstitial cell hyperplasia and numerous cysts with features of advanced follicular atresia. In addition, serum testosterone and androstenedione levels significantly declined in fatty rats from age 8 to 16 weeks, so that fatty rats showed significantly lower levels of serum testosterone (12 and 16 weeks) and androstenedione (all weeks) than lean rats. This may reflect a reduction of androgen synthesis during follicular atresia. Serum adiponectin levels were high in immature fatty rats, and although the levels declined significantly as they matured, it remained significantly higher in fatty rats than in lean rats. On the other hand, levels of ovarian adiponectin and its receptors were significantly lower in mature fatty rats than in lean mature rats or immature fatty rats.

Conclusions

Our findings indicate that ovarian morphology and hormone profiles are significantly altered by the continuous insulin resistance in Zucker fatty rats. Simultaneously, abrupt reductions in serum and ovarian adiponectin also likely contribute to the infertility seen in fatty rats.  相似文献   
74.
Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS), a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >107 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <103 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.  相似文献   
75.
A decrease in adiponectin secretion leads to the early stage of atherosclerosis. Discoidal high-density lipoproteins (HDL) accept the cholesterol that effluxes from cells expressing the ATP binding cassette transporter A1 (ABCA1) in the first step of reverse cholesterol transport (RCT). Recently, a new therapeutic strategy involving reconstituted (r)HDL has been shown to enhance RCT. Therefore, we hypothesized that adiponectin may increase the efflux associated with ABCA1 and also enhance rHDL-induced efflux in human embryonic kidney 293 (HEK293T) cells. We transfected adiponectin receptor 1 and 2 (AdipoR1 and AdipoR2) cDNA into cells. The transfected cells were labeled with [3H]cholesterol following cholesterol loading with or without adiponectin for 24 h. The levels of cholesterol efflux were analyzed using a liquid scintillation counter. Treatment with adiponectin was associated with significantly higher levels of efflux in AdipoR1- and AdipoR2-transfected cells. Interestingly, rHDL-induced cholesterol efflux was enhanced in the presence of adiponectin. The down-regulation of adiponectin receptors using short-hairpin RNA decreased rHDL-induced cholesterol efflux with the down-regulation of ABCA1. In summary, adiponectin and its receptors increased cholesterol efflux and also enhanced rHDL-induced efflux at least partially through an ABCA1 pathway. These results suggest that adiponectin may enhance the RCT system and induce an anti-atherogenic effect.  相似文献   
76.
A novel sphingomyelin-binding protein (clamlysin) was purified from the foot muscle of a brackishwater clam, Corbicula japonica. The purified 24.8-kDa protein lysed sheep, horse and rabbit erythrocytes and the hemolytic activity was inhibited by sphingomyelin, but not other phospholipids or glycosphingolipids. The open reading frame of the clamlysin gene encoded a putative 26.9-kDa protein (clamlysin B) which showed high sequence similarity with the actinoporin family. A surface plasmon resonance assay confirmed that clamlysin B specifically bound to sphingomyelin. Furthermore, two cDNA variants of clamlysin, encoding putative 31.4 kDa (clamlysin A) and 11 kDa (clamlysin C) proteins, were isolated. Only the 31.4-kDa variant was found to exhibit sphingomyelin-binding activity. Clamlysin A and B, but not C, shared a sequence (domain II) conserved in all known sphingomyelin-binding proteins. Domain II fused with a glutathione S-transferase bound to sphingomyelin. Horse erythrocytes, mouse melanoma B16 and GM95 cells, and Chinese hamster ovary CHO-K1 cells, but not the same cells treated with bacterial sphingomyelinase, were immunostained with clamlysin B. These results indicate that clamlysin B binds to the sphingomyelin of living cells and thus would be useful as a molecular probe to detect sphingomyelin.  相似文献   
77.
78.
79.
Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT(1) receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ).  相似文献   
80.
The insect brain secretes prothoracicotropic hormone (PTTH), which stimulates the prothoracic gland to synthesize ecdysone. The active metabolite of ecdysone, 20-hydroxyecdysone (20E), works through ecdysone receptor (EcR) and ultraspiracle (USP) to initiate molting and metamorphosis by regulating downstream genes. Previously, we found that EcR was expressed in the PTTH-producing neurosecretory cells (PTPCs) in larval brain of the silkworm Bombyx mori, suggesting that PTPCs function as the master cells of development under the regulation of 20E. To gain a better understanding of the molecular mechanism of the 20E control of PTPCs, we performed a comprehensive screening of genes induced by 20E using DNA microarray with brains of day-2 fifth instar silkworm larvae. Forty-one genes showed greater than twofold changes caused by artificial application of 20E. A subsequent semiquantitative screening identified ten genes upregulated by 20E, four of which were novel or not previously identified as 20E-response genes. Developmental profiling determined that two genes, UP4 and UP5, were correlated with the endogenous ecdysteroid titer. Whole-mount in situ hybridization showed exclusive expression of these two genes in two pairs of cells in the larval brain in response to 20E-induction, suggesting that the cells are PTPCs. BLAST searches revealed that UP4 and UP5 are Bombyx homologs of vrille and tarsal-less, respectively. The present study identifies 20E-induced genes that may be involved in the ecdysone signal hierarchies underlying pupal-adult development and/or the 20E regulation of PTPCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号