首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  57篇
  2021年   3篇
  2017年   2篇
  2015年   3篇
  2014年   10篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
  1991年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有57条查询结果,搜索用时 0 毫秒
51.
Abstract.  Triatoma guasayana (Wygodzinsky & Abalos), a sylvatic vector of Chagas' disease, occurs in natural and peridomestic habitats of the dry Chaco region of Argentina, Bolivia and Paraguay. Ten-year retrospective spatial analyses of peridomestic T. guasayana abundance in the rural community of Amamá were expanded to the neighbouring community of Trinidad in northwestern Argentina. The distribution of T. guasayana in domiciles, peridomiciles (storerooms, chicken coops and corrals) and natural habitats (bromeliads, dry cacti and logs) around houses (i.e. 'semi-sylvatic' habitats) was analysed. The distribution of the 316 T. guasayana specimens collected in domestic and peridomestic sites during 1993–2002 was significantly clustered in both communities. Searches confirmed that the spatial distribution of semi-sylvatic and peridomestic T. guasayana was determined by the joint effects of the local abundance of goats and the density of semi-sylvatic habitats. The integration of detailed entomological and demographic longitudinal data with geographic information system data, high-resolution satellite imagery, appropriate spatial and temporal analyses and field observations allowed us to infer the underlying processes determining the distribution of T. guasayana in rural communities. This approach may be applied to other sylvatic and peridomestic vectors of Chagas' disease in order to identify high-risk areas for targeted control or environmental management.  相似文献   
52.

Background

Fifty years of residual insecticide spraying to control Triatoma infestans in the Gran Chaco region of northern Argentina, Paraguay and Bolivia shows that vertically coordinated interventions aiming at full coverage have limited effects and are unsustainable. We quantified the spatial distribution of T. infestans domestic infestation at the district level, identified environmental factors associated with high infestation and then explored the usefulness of risk maps for the spatial stratification of interventions.

Methods and Findings

We performed spatial analyses of house infestation data collected by the National Chagas Service in Moreno Department, northern Argentina (1999–2002). Clusters of high domestic infestation occurred in the southwestern extreme of the district. A multi-model selection approach showed that domestic infestation clustered in areas of low elevation, with few farmlands, high density of rural houses, high mean maximum land surface temperature, large NDVI, and high percentage of degraded and deforested lands. The best model classified 98.4% of the communities in the training dataset (sensitivity, 93.3%; specificity, 95.4%). The risk map evidenced that the high-risk area only encompassed 16% of the district. By building a network-based transportation model we assessed the operational costs of spatially contiguous and spatially targeted interventions. Targeting clusters of high infestation would have reached ∼80% of all communities slated for full-coverage insecticide spraying, reducing in half the total time and economic cost incurred by a spatially contiguous strategy.

Conclusions and Significance

In disperse rural areas where control programs can accomplish limited coverage, consideration of infestation hot spots can contribute to the design and execution of cost-effective interventions against Chagas disease vectors. If field validated, targeted vertical control in high risk areas and horizontal control in medium to low risk areas may provide both a logistically and economically feasible alternative to blanket vertical insecticide spraying when resources are limited.  相似文献   
53.

Background

In coastal Kenya, infection of human populations by a variety of parasites often results in co-infection or poly-parasitism. These parasitic infections, separately and in conjunction, are a major cause of chronic clinical and sub-clinical human disease and exert a long-term toll on economic welfare of affected populations. Risk factors for these infections are often shared and overlap in space, resulting in interrelated patterns of transmission that need to be considered at different spatial scales. Integration of novel quantitative tools and qualitative approaches is needed to analyze transmission dynamics and design effective interventions.

Methodology

Our study was focused on detecting spatial and demographic patterns of single- and co-infection in six villages in coastal Kenya. Individual and household level data were acquired using cross-sectional, socio-economic, and entomological surveys. Generalized additive models (GAMs and GAMMs) were applied to determine risk factors for infection and co-infections. Spatial analysis techniques were used to detect local clusters of single and multiple infections.

Principal findings

Of the 5,713 tested individuals, more than 50% were infected with at least one parasite and nearly 20% showed co-infections. Infections with Schistosoma haematobium (26.0%) and hookworm (21.4%) were most common, as was co-infection by both (6.3%). Single and co-infections shared similar environmental and socio-demographic risk factors. The prevalence of single and multiple infections was heterogeneous among and within communities. Clusters of single and co-infections were detected in each village, often spatially overlapped, and were associated with lower SES and household crowding.

Conclusion

Parasitic infections and co-infections are widespread in coastal Kenya, and their distributions are heterogeneous across landscapes, but inter-related. We highlighted how shared risk factors are associated with high prevalence of single infections and can result in spatial clustering of co-infections. Spatial heterogeneity and synergistic risk factors for polyparasitism need to be considered when designing surveillance and intervention strategies.  相似文献   
54.
Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to 74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively. Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the SSI place considered to define a match. Both methods had perfect concordance identifying each participant''s house, followed by 80–100% concordance for identifying schools and lodgings, and 50–80% concordance for residences and commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as described by a sub-sample (n = 101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to recharge (4.6%). We provide a quantitative assessment of the strengths and weaknesses of both methods for capturing fine-scale human mobility.  相似文献   
55.
The blacklegged tick, Ixodes scapularis, is of significant public health importance as a vector of Borrelia burgdorferi, the agent of Lyme borreliosis. The timing of seasonal activity of each immature I. scapularis life stage relative to the next is critical for the maintenance of B. burgdorferi because larvae must feed after an infected nymph to efficiently acquire the infection from reservoir hosts. Recent studies have shown that some strains of B. burgdorferi do not persist in the primary reservoir host for more than a few weeks, thereby shortening the window of opportunity between nymphal and larval feeding that sustains their enzootic maintenance. We tested the hypothesis that climate is predictive of geographic variation in the seasonal activity of I. scapularis, which in turn differentially influences the distribution of B. burgdorferi genotypes within the geographic range of I. scapularis. We analyzed the relationships between climate, seasonal activity of I. scapularis, and B. burgdorferi genotype frequency in 30 geographically diverse sites in the northeastern and midwestern United States. We found that the magnitude of the difference between summer and winter daily temperature maximums was positively correlated with the degree of seasonal synchrony of the two immature stages of I. scapularis. Genotyping revealed an enrichment of 16S-23S rRNA intergenic spacer restriction fragment length polymorphism sequence type 1 strains relative to others at sites with lower seasonal synchrony. We conclude that climate-associated variability in the timing of I. scapularis host seeking contributes to geographic heterogeneities in the frequencies of B. burgdorferi genotypes, with potential consequences for Lyme borreliosis morbidity.An increasingly important area of research in infectious disease epidemiology is the influence of pathogen strain diversity on patterns of disease risk and clinical outcome. Strain-specific pathogenicity or transmissibility can be important clinical and epidemiological parameters; for example, only a subset of Neisseria meningitidis strains are responsible for invasive infections leading to meningitis (1). Geography and environmental features influence the genetic structure of certain pathogens by regulating their distribution, dispersal, or population size (8, 31, 49). Accordingly, a heterogeneous environment will result in spatial structuring of genotype frequencies, with possible epidemiological implications.Lyme borreliosis is a tick-borne zoonosis caused by Borrelia burgdorferi, a spirochetal bacterium that exhibits genetic diversity throughout its range in eastern North America (12, 60), where it is maintained in a horizontal transmission cycle between its vector, the blacklegged tick Ixodes scapularis, and vertebrate reservoir hosts. I. scapularis has a two-year life cycle in which it takes three blood meals, one per life stage, with the two subadult stages responsible for the enzootic maintenance of B. burgdorferi (2, 3, 51). Larval ticks hatch uninfected from eggs (41) and acquire the spirochetes from infected reservoir hosts. Infected larvae maintain the spirochetes transstadially, allowing them to transmit B. burgdorferi to uninfected reservoirs during their nymphal blood meal the following summer. The seasonal timing of activity, or phenology, of each tick life stage relative to the next is a critical factor in the maintenance of B. burgdorferi because larvae typically must feed after an infected nymph in order to acquire the bacteria (32).Previous studies in Europe of tick-borne encephalitis virus have shown that seasonal synchrony of immature ticks is necessary for the maintenance of the virus in natural enzootic cycles because nonsystemic infections are transmitted from nymphs to larvae feeding in close proximity on the same individual reservoir rodent (48). Furthermore, seasonal synchrony of immature tick activity, a prerequisite of cofeeding, was found to be correlated with climate (47). Although it is possible for an I. scapularis larva to become infected with B. burgdorferi by simultaneously feeding in close proximity to an infected nymph, a role for cofeeding transmission in the enzootic maintenance of B. burgdorferi in North America has not been established (43). Rather, until recently, the existing evidence indicated that B. burgdorferi causes life-long systemic infections in reservoirs that allow for its maintenance in the absence of seasonal synchrony of I. scapularis immatures (18). However, recent studies suggest that this may not always be the case (34) and that there are differences in the duration of infectiousness that are strain specific (16, 28).We hypothesized that large-scale, climate-driven geographic variability in the host seeking phenology of immature I. scapularis ticks is associated with heterogeneity in the frequencies of strains acquired by larval ticks. Using regression models and accounting for spatial autocorrelation, we examined the relationships between climate, the temporal synchrony of larval and nymphal seasonal host seeking activity, and B. burgdorferi genotype frequency in ticks collected from 30 geographically diverse sites systematically selected for their locations throughout the northeastern and midwestern United States.Here we present empirical evidence that climate patterns, specifically, regional variation in summer and winter temperature cycle extremes, are associated with variation in the seasonal synchrony of I. scapularis larval and nymphal host seeking activity. Furthermore, both climate and the differences in the seasonal synchrony of the two immature tick stages are related to geographic variation in B. burgdorferi genotype frequency. Our results point to the impact of climate upon the natural dynamics of enzootic transmission and population genetic structure of an important vector-borne human pathogen, with possible implications for the distribution of human disease risk and epidemiology.  相似文献   
56.
Genetic diversity of Trypanosoma cruzi populations and parasite transmission dynamics have been well documented throughout the Americas, but few studies have been conducted in the Gran Chaco ecoregion, one of the most highly endemic areas for Chagas disease, caused by T. cruzi. In this study, we assessed the distribution of T. cruzi lineages (identified by PCR strategies) in Triatoma infestans, domestic dogs, cats, humans and sylvatic mammals from two neighbouring rural areas with different histories of transmission and vector control in northern Argentina. Lineage II predominated amongst the 99 isolates characterised and lineage I amongst the six isolates obtained from sylvatic mammals. T. cruzi lineage IIe predominated in domestic habitats; it was found in 87% of 54 isolates from Tr. infestans, in 82% of 33 isolates from dogs, and in the four cats found infected. Domestic and sylvatic cycles overlapped in the study area in the late 1980s, when intense domestic transmission occurred, and still overlap marginally. The introduction of T. cruzi from sylvatic into domestic habitats is likely to occur very rarely in the current epidemiological context. The household distribution of T. cruzi lineages showed that Tr. infestans, dogs and cats from a given house compound shared the same parasite lineage in most cases. Based on molecular evidence, this result lends further support to the importance of dogs and cats as domestic reservoir hosts of T. cruzi. We believe that in Argentina, this is the first time that lineage IIc has been isolated from naturally infected domestic dogs and Tr. infestans.  相似文献   
57.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号