首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1944年   3篇
  1934年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
81.
Antigen/antibody complexes can efficiently target antigen presenting cells to allow stimulation of the cellular immune response. Due to the difficulty of manufacture and their inherent instability complexes have proved inefficient cancer vaccines. However, anti-idiotypic antibodies mimicking antigens have been shown to stimulate both antibody and T cell responses. The latter are due to T cell mimotopes expressed within the complementarity-determining regions (CDRs) of antibodies that are efficiently presented to dendritic cells in vivo. Based on this observation we have designed a DNA vaccine platform called ImmunoBody™, where cytotoxic T lymphocyte (CTL) and helper T cell epitopes replace CDR regions within the framework of a human IgG1 antibody. The ImmunoBody™ expression system has a number of design features which allow for rapid production of a wide range of vaccines. The CDR regions of the heavy and light chain have been engineered to contain unique restriction endonuclease sites, which can be easily opened, and oligonucleotides encoding the T cell epitopes inserted. The variable and constant regions of the ImmunoBody™ are also flanked by restriction sites, which permit easy exchange of other IgG subtypes. Here we show a range of T cell epitopes can be inserted into the ImmunoBody™ vector and upon immunization these T cell epitopes are efficiently processed and presented to stimulate high frequency helper and CTL responses capable of anti-tumor activity.Key words: DNA vaccines, cancer vaccines, melanoma, CTL, helper T cells  相似文献   
82.
83.
The phylogeny and taxonomy of mammalian species were originally based upon shared or derived morphological characteristics. However, genetic analyses have more recently played an increasingly important role in confirming existing or establishing often radically different mammalian groupings and phylogenies. The two most commonly used genetic loci in species identification are the cytochrome oxidase I gene (COI) and the cytochrome b gene (cyt b). For the first time this study provides a detailed comparison of the effectiveness of these two loci in reconstructing the phylogeny of mammals at different levels of the taxonomic hierarchy in order to provide a basis for standardizing methodologies in the future. Interspecific and intraspecific variation is assessed and for the first time, to our knowledge, statistical confidence is applied to sequence comparisons. Comparison of the DNA sequences of 217 mammalian species reveals that cyt b more accurately reconstructs their phylogeny and known relationships between species based on other molecular and morphological analyses at Super Order, Order, Family and generic levels. Cyt b correctly assigned 95.85% of mammal species to Super Order, 94.31% to Order and 98.16% to Family compared to 78.34%, 93.36% and 96.93% respectively for COI. Cyt b also gives better resolution when separating species based on sequence data. Using a Kimura 2-parameter p-distance (x100) threshold of 1.5-2.5, cyt b gives a better resolution for separating species with a lower false positive rate and higher positive predictive value than those of COI.  相似文献   
84.
85.
There is now considerable evidence to suggest the cheetah (Acinonyx jubatus) has limited genetic diversity. However, the extent of this and its significance to the fitness of the cheetah population, both in the wild and captivity, is the subject of some debate. This reflects the difficulty associated with establishing a direct link between low variability at biologically significant loci and deleterious aspects of phenotype in this, and other, species. Attempts to study one such region, the feline leucocyte antigen (FLA), are hampered by a general reliance on cloning and sequencing which is expensive, labour-intensive, subject to PCR artefact and always likely to underestimate true variability. In this study we have applied reference strand-mediated conformational analysis (RSCA) to determine the FLA-DRB phenotypes of 25 cheetahs. This technique was rapid, repeatable and less prone to polymerase chain reaction (PCR)-induced sequence artefacts associated with cloning. Individual cheetahs were shown to have up to three FLA-DRB genes. A total of five alleles were identified (DRB*ha14-17 and DRB*gd01) distributed among four genotypes. Fifteen cheetahs were DRB*ha14/ha15/ha16/ha17, three were DRB*ha15/ha16/ha17, six were DRB*ha14/ha16/ha17 and one was DRB*ha14/ha15/ha16/ha17/gd01. Sequence analysis of DRB*gd01 suggested it was a recombinant of DRB*ha16 and DRB*ha17. Generation of new alleles is difficult to document, and the clear demonstration of such an event is unusual. This study confirms further the limited genetic variability of the cheetah at a biologically significant region. RSCA will facilitate large-scale studies that will be needed to correlate genetic diversity at such loci with population fitness in the cheetah and other species.  相似文献   
86.

Background  

Since Darwin's Origin of Species, reconstructing the Tree of Life has been a goal of evolutionists, and tree-thinking has become a major concept of evolutionary biology. Practically, building the Tree of Life has proven to be tedious. Too few morphological characters are useful for conducting conclusive phylogenetic analyses at the highest taxonomic level. Consequently, molecular sequences (genes, proteins, and genomes) likely constitute the only useful characters for constructing a phylogeny of all life. For this reason, tree-makers expect a lot from gene comparisons. The simultaneous study of the largest number of molecular markers possible is sometimes considered to be one of the best solutions in reconstructing the genealogy of organisms. This conclusion is a direct consequence of tree-thinking: if gene inheritance conforms to a tree-like model of evolution, sampling more of these molecules will provide enough phylogenetic signal to build the Tree of Life. The selection of congruent markers is thus a fundamental step in simultaneous analysis of many genes.  相似文献   
87.
Receptor cells of the vomeronasal organ (VNO) are thought to detect pheromone-like molecules important for reproductive physiology. Several compounds derived from male mouse urine have been demonstrated to affect endocrine events in female mice. In the present study, the ability of these compounds to affect VNO activity was tested. In dissociated VNO cells held under voltage clamp conditions, application of dehydro-exo-brevicomin (DHB) evoked an outward current at negative holding potentials and an inward current at positive holding potentials. Under current clamp, DHB reduced action potential firing. Since DHB application caused a decrease in membrane conductance, this compound appeared to act by reducing inward current through closing an ion channel. Biochemical experiments tested the effects of DHB and 2- (sec-butyl)-4,5-dihydrothiazole (SBT) on cAMP levels in the VNO. A mixture of DHB and SBT decreased cAMP levels in VNO sensory tissue and had no effect on VNO non-sensory tissue. The results suggest that pheromones have an inhibitory influence on action potential generation and on cAMP levels in receptor cells of the VNO.   相似文献   
88.
89.
Cloning and gene map assignment of the Xiphophorus DNA ligase 1 gene   总被引:1,自引:0,他引:1  
Fishes represent the stem vertebrate condition and have maintained several gene arrangements common to mammalian genomes throughout the 450 Myr of divergence from a common ancestor. One such syntenic arrangement includes the GPI-PEPD enzyme association on Xiphophorus linkage group IV and human chromosome 19. Previously we assigned the Xiphophorus homologue of the human ERCC2 gene to linkage group U5 in tight association with the CKM locus. CKM is also tightly linked to the ERCC2 locus on human chromosome 19, leading to speculation that human chromosome 19 may have arisen by fusion of two ancestral linkage groups which have been maintained in fishes. To investigate this hypothesis further, we isolated and sequenced Xiphophorus fish genomic regions exhibiting considerable sequence similarity to the human DNA ligase 1 amino acid sequence. Comparison of the fish DNA ligase sequence with those of other species suggests several modes of amino acid conservation in this gene. A 2.2-kb restriction fragment containing part of an X. maculatus DNA ligase 1 exon was used in backcross hybrid mapping with 12 enzyme or RFLP loci. Significant linkage was observed between the nucleoside phosphorylase (NP2) and the DNA ligase (LIG1) loci on Xiphophorus linkage group VI. This assignment suggests that the association of four DNA repair-related genes on human chromosome 19 may be the result of chance chromosomal rearrangements.   相似文献   
90.
DNA metabarcoding is an efficient method for measuring biodiversity, but the process of initiating long‐term DNA‐based monitoring programmes, or integrating with conventional programs, is only starting. In marine ecosystems, plankton surveys using the continuous plankton recorder (CPR) have characterized biodiversity along transects covering millions of kilometres with time‐series spanning decades. We investigated the potential for use of metabarcoding in CPR surveys. Samples (n = 53) were collected in two Southern Ocean transects and metazoans identified using standard microscopic methods and by high‐throughput sequencing of a cytochrome c oxidase subunit I marker. DNA increased the number of metazoan species identified and provided high‐resolution taxonomy of groups problematic in conventional surveys (e.g., larval echinoderms and hydrozoans). Metabarcoding also generally produced more detections than microscopy, but this sensitivity may make cross‐contamination during sampling a problem. In some samples, the prevalence of DNA from large plankton such as krill masked the presence of smaller species. We investigated adding a fixed amount of exogenous DNA to samples as an internal control to allow determination of relative plankton biomass. Overall, the metabarcoding data represent a substantial shift in perspective, making direct integration into current long‐term time‐series challenging. We discuss a number of hurdles that exist for progressing DNA metabarcoding from the current snapshot studies to the requirements of a long‐term monitoring programme. Given the power and continually increasing efficiency of metabarcoding, it is almost certain this approach will play an important role in future plankton monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号