首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   55篇
  2023年   2篇
  2022年   9篇
  2021年   14篇
  2020年   6篇
  2019年   7篇
  2018年   11篇
  2017年   14篇
  2016年   19篇
  2015年   39篇
  2014年   42篇
  2013年   100篇
  2012年   66篇
  2011年   60篇
  2010年   39篇
  2009年   46篇
  2008年   72篇
  2007年   77篇
  2006年   83篇
  2005年   57篇
  2004年   83篇
  2003年   75篇
  2002年   84篇
  2001年   7篇
  2000年   12篇
  1999年   21篇
  1998年   23篇
  1997年   13篇
  1996年   20篇
  1995年   19篇
  1994年   5篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1984年   4篇
  1983年   10篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1978年   4篇
  1977年   4篇
  1975年   5篇
  1972年   2篇
  1971年   2篇
  1970年   4篇
  1967年   1篇
  1962年   1篇
排序方式: 共有1232条查询结果,搜索用时 890 毫秒
101.
The karyopherin CRM1 mediates nuclear export of proteins and ribonucleoproteins bearing a leucine‐rich nuclear export signal (NES). To elucidate the precise mechanism by which NES‐cargos are dissociated from CRM1 in the cytoplasm, which is important for transport directionality, we determined a 2.0‐Å resolution crystal structure of yeast CRM1:RanBP1:RanGTP complex, an intermediate in the disassembly of the CRM1 nuclear export complex. The structure shows that on association of Ran‐binding domain (RanBD) of RanBP1 with CRM1:NES‐cargo:RanGTP complex, RanBD and the C‐terminal acidic tail of Ran induce a large movement of the intra‐HEAT9 loop of CRM1. The loop moves to the CRM1 inner surface immediately behind the NES‐binding site and causes conformational rearrangements in HEAT repeats 11 and 12 so that the hydrophobic NES‐binding cleft on the CRM1 outer surface closes, squeezing out the NES‐cargo. This allosteric mechanism accelerates dissociation of NES by over two orders of magnitude. Structure‐based mutagenesis indicated that the HEAT9 loop also functions as an allosteric autoinhibitor to stabilize CRM1 in a conformation that is unable to bind NES‐cargo in the absence of RanGTP.  相似文献   
102.
Prostaglandin E2 (PGE2) is a bioactive lipid that can elicit a wide range of biological effects associated with inflammation and cancer. The physiological roles of PGE2 are diverse, mediated in part through activation of key downstream signaling cascades via transmembrane EP receptors located on the cell surface. Elevated levels of COX-2 and concomitant overproduction of PGE2 are often found in human cancers. These observations have led to the use of non-steroidal anti-inflammatory drugs (NSAIDs) as chemopreventive agents, particularly for colorectal cancer (CRC). Their long-term use, however, may be associated with gastrointestinal toxicity and increased risk of adverse cardiovascular events, prompting the development of other enzymatic targets in this pathway. This review will focus on recent efforts to target the terminal synthase, mPGES-1, for cancer chemoprevention. The role of mPGES-1 in the pathogenesis of various cancers is discussed. In addition, an overview of recent efforts to develop small molecule inhibitors that target the protein with high selectivity is also be reviewed.  相似文献   
103.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   
104.
Phosphatidylinositol (PI), an important constituent of membranes, contains stearic acid as the major fatty acid at the sn-1 position. This fatty acid is thought to be incorporated into PI through fatty acid remodeling by sequential deacylation and reacylation. However, the genes responsible for the reaction are unknown, and consequently, the physiological significance of the sn-1 fatty acid remains to be elucidated. Here, we identified acl-8, -9, and -10, which are closely related to each other, and ipla-1 as strong candidates for genes involved in fatty acid remodeling at the sn-1 position of PI. In both ipla-1 mutants and acl-8 acl-9 acl-10 triple mutants of Caenorhabditis elegans, the stearic acid content of PI is reduced, and asymmetric division of stem cell-like epithelial cells is defective. The defects in asymmetric division of these mutants are suppressed by a mutation of the same genes involved in intracellular retrograde transport, suggesting that ipla-1 and acl genes act in the same pathway. IPLA-1 and ACL-10 have phospholipase A1 and acyltransferase activity, respectively, both of which recognize the sn-1 position of PI as their substrate. We propose that the sn-1 fatty acid of PI is determined by ipla-1 and acl-8, -9, -10 and crucial for asymmetric divisions.  相似文献   
105.
The objective of this study was to develop multiplex PCR detection method for five Pythium species associated with turfgrass diseases, Pythium aphanidermatum, Pythium arrhenomanes, Pythium graminicola, Pythium torulosum and Pythium vanterpoolii. Species‐specific primers and two common primers were designed based on the sequences of the internal transcribed spacer region of ribosomal DNA. Another primer set by which all organisms would be amplified in 18S rDNA was used as a positive control. When these total nine primers were applied to the multiplex PCR, all species were individually discriminated in the mixture of five species culture DNA. Furthermore, all five Pythium species were detected in naturally infected plants using the multiplex PCR.  相似文献   
106.
107.

Background  

The flavin-dependent enzyme pyranose 2-oxidase (P2Ox) has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx), which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties.  相似文献   
108.
Nitric oxide (NO) is related to various physiological effects as well as to numerous diseases caused by accentuation of NO production. Measurement of NO in cells and tissues is difficult as NO readily reacts with other molecules; furthermore, its half‐life as a radical is fleeting. Currently, many NO pharmaceuticals are marketed as therapeutic agents for ischemic disease. Consequently, the identification of NO radicals and determination of generation rate from pharmaceuticals is very important when the effect of the medicinal supply is estimated. In this study, we developed a fluorometric assay for NO employing sesamol (3,4‐methylenedioxyphenol) as a fluorometric substrate. Sesamol is converted to a fluorescent derivative (ex. 365 nm, em. 447 nm), which is dimmer in the presence of NO. The detection limit of NO with this method is 400 fmol; moreover, NO generated from drugs can be measured. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
109.
110.
The murine recessive yellow (Mc1r(e)) is a loss-of-function mutation in the receptor for alpha-melanocyte-stimulating hormone, melanocortin receptor 1 (Mc1r) and produces yellow coats by inducing pheomelanin synthesis in hair follicular melanocytes. However, it is not known whether the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes. In this study, the proliferation and differentiation of recessive yellow epidermal melanocytes cultured in dibutyryl cyclic AMP-supplemented serum-free medium were investigated in detail. The melanocytes produced mainly eumelanin in this culture system. The proliferation of recessive yellow melanocytes was decreased compared with that of wild-type at the e-locus, black melanocytes. The differentiation of melanocytes was also delayed and inhibited in recessive yellow mice. Tyrosinase (TYR) activity and TYR-related protein 1 (TRP1) and TRP2 (dopachrome tautomerase, DCT) expressions were decreased and, in addition, the maturation of stage IV melanosomes was inhibited. Excess l-tyrosine (l-Tyr) added to the culture media rescued the reduced activity of proliferation of melanocytes. l-Tyr also stimulated TYR activity and TRP1 and TRP2 expressions as well as the maturation of stage IV melanosomes and pigmentation. These results suggest that the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes and l-Tyr rescues the reduced proliferative and differentiative activities by stimulating TYR activity and TRP1 and TRP2 expressions as well as melanosome maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号