首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12121篇
  免费   905篇
  国内免费   361篇
  2024年   19篇
  2023年   90篇
  2022年   232篇
  2021年   385篇
  2020年   289篇
  2019年   351篇
  2018年   403篇
  2017年   317篇
  2016年   423篇
  2015年   681篇
  2014年   791篇
  2013年   860篇
  2012年   1080篇
  2011年   1022篇
  2010年   642篇
  2009年   543篇
  2008年   728篇
  2007年   648篇
  2006年   534篇
  2005年   489篇
  2004年   508篇
  2003年   395篇
  2002年   315篇
  2001年   255篇
  2000年   211篇
  1999年   207篇
  1998年   95篇
  1997年   64篇
  1996年   55篇
  1995年   62篇
  1994年   59篇
  1993年   44篇
  1992年   81篇
  1991年   75篇
  1990年   55篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   25篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   20篇
  1979年   19篇
  1978年   12篇
  1977年   18篇
  1975年   14篇
  1974年   16篇
  1970年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
This study was performed to explore novel and valuable uses of insect resources, important subjects of the natural compound used in bio‐industries. The whole bodies of two crickets, Gryllus bimaculatus and Teleogryllus emma, selected from medicinal insect species, were carefully ground and treated with 80% EtOH. The insect extracts were solubilized and separated by hexane, butanol, and D.W according to their polarities. Three types of extracts, a D.W fraction (G1) and a boiling extract (G2) of an introduced cricket, G. bimaculatus, and a D.W fraction (T1) of a Korean local cricket, T. emma, were prepared to assay immune stimulating activity of cricket originated compounds. The all of three treated cricket extracts showed to increase IL‐4, IFN‐, and TNF‐α. Among those extract, extract G2, boiled extract from G. bimaculatus, was the best immune–enhancing fraction. The results of this study could be fundamental information for further works to use insects as natural resources having plenty of potentials and varieties.  相似文献   
82.
Kang  Mohinder S. 《Glycobiology》1996,6(2):209-216
We have previously shown (Sunkara et al., 1989; Taylor et al.,1991) that 6-o-butanoyl castanospermine (BuCast) was a 30–50-foldbetter inhibitor of HIV syncytia formalion than castanospermine(Cast). Radiolabeled Cast and BuCast were used to study theuptake and metabolism of these compounds in cultured cells andin mice. BuCast was preferentially taken up by cells comparedto Cast. Approximately 30–50-fold higher radioactivitywas found in cells treated with BuCast compared to cells treatedwith Cast during the initial 4–6h of labeling. HPLC analysisshowed that once BuCast was taken up by cells, it was rapidlyconverted to Cast. Mice given oral doses of BuCast had 5–10-foldhigher levels of Cast in the plasma and tissues as comparedto Cast treated mice. However, when the compounds were giveni.v., the levels of plasma and tissue radioactivity obtainedfrom Cast or BuCast were equivalent suggesting rapid conversionof BuCast to Cast in the blood. In mice orally treated withBuCast, HPLC analysis suggested that only Cast was found inthe plasma and tissues. With multiple dosing of mice, additiveresults were obtained, suggesting that multiple doses may beused to obtain higher concentrations of the compound in thetarget cells. These data suggest that the lipophilic propertiesof butanoyl side chain on the Cast ring makes BuCast significantlybetter absorbed, and this may help to alleviate some of thegut toxicity associated with Cast treatment. HIV AIDS glycoproteins inhibitors  相似文献   
83.
Summary The unusual amino acid hypusine [N -(4-amino-2-hydroxybutyl)lysine] is a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology, eIF-4D). It is formed posttranslationally and exclusively in this protein in two consecutive enzymatic reactions, (i) modification of a single lysine residue of the eIF-5A precursor protein by the transfer of the 4-aminobutyl moiety of the polyamine spermidine to its-amino group to form the intermediate, deoxyhypusine [N -(4-aminobutyl)lysine] and (ii) subsequent hydroxylation of this intermediate to form hypusine. The amino acid sequences surrounding the hypusine residue are strictly conserved in all eukaryotic species examined, suggesting the fundamental importance of this amino acid throughout evolution. Hypusine is required for the activity of eIF-5Ain vitro. There is strong evidence that hypusine and eIF-5A are vital for eukaryotic cell proliferation. Inactivation of both of the eIF-5A genes is lethal in yeast and the hypusine modification appears to be a requirement for yeast survival (Schnier et al., 1991 [Mol Cell Biol 11: 3105–3114]; Wöhl et al., 1993 [Mol Gen Genet 241: 305–311]). Furthermore, inhibitors of either of the hypusine biosynthetic enzymes, deoxyhypusine synthase or deoxyhypusine hydroxylase, exert strong anti-proliferative effects in mammalian cells, including many human cancer cell lines. These inhibitors hold potential as a new class of anticancer agents, targeting one specific eukaryotic cellular reaction, hypusine biosynthesis.  相似文献   
84.
以合成废水为基质,研究了采用硫酸盐还原-甲烷化两相厌氧新型工艺处理含高浓度硫酸盐有机废水的系统运行工艺条件.结果表明,酸化-硫酸盐还原反应器的适宜pH为6.5-7.0;500mg/l的S~(2-)使SRB的硫酸盐还原活性下降;208mg/l的[H_2S]_L抑制MPB活性的95.4%;推导出估算气提塔出水回流比R的模型;以得到的工艺条件为依据处理了含19200mg/1的SO_4~(2-)和29400mg/l COD的味精废水.  相似文献   
85.
86.
Summary Random copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) with a wide range of compositions varying from 0 to 83 mol% 4HB were produced by Alcaligenes latus from the mixed carbon substrates of 3-hydroxybutyric and 4-hydroxybutyric acids. The structure and physical properties of P(3HB-co-4HB) were characterized by1H and13C NMR spectroscopy, gel-permeation chromatography, and differential scanning calorimetry. The isothermal radial growth rates of spherulites of P(3HB-co-4HB) were much slower than the rate of P(3HB) homopolymer. The enzymatic degradation rates of P(3HB-co-4HB) films by a PHB depolymerase were strongly influenced by the copolymer composition.  相似文献   
87.
A chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP), induced an acidification of cytosol by about 0.05 pH units in 30 sec followed by an alkalinization in human neutrophils. The quantitative contribution of acid production to the acidification was studied. The superoxide (O2 ) production stimulated by fMLP was not involved in the acidification because the production of acids in neutrophils from patients with chronic granulomatous disease who do not produce O2 , was the same as that in normal neutrophils. The intracellular acidification was completely inhibited by deoxyglucose, suggesting that energy metabolism enhanced upon stimulation by fMLP might be the main source of the acidification. Although enhancement of the lactate formation by fMLP was 0.8 nmol/106 cells, which could lower intracellular pH by 0.08 pH units, the lactate production could not explain the initial acidification because the production of lactate started at 1 min after the stimulation while the intracellular acidification began immediately after the stimulation. Mitochondrial respiratory inhibitors such as KCN and rotenone had no effects on the fMLP-induced intracellular acidification. The fMLP-induced production of CO2 in 30 sec through the hexose monophosphate shunt was only 2.6 pmol/106 cells, which was calculated to decrease intracellular pH by only 0.0014. Thus, changes of energy metabolism induced by fMLP does not explain the acidification.Abbreviations fMLP N-formyl-methionyl-leucyl-phenylalanine - BCECF-AM 2,7-bis(carboxyethyl)carboxyfluorescein acetoxymethyl ester - PMA phorbol 12-myristate 13-acetate - CGD chronic granulomatous disease - HMP hexose monophosphate - pHi intracellular pH  相似文献   
88.
In polarized Madin-Darby canine kidney (MDCK) cells, the transferrin receptor (TR) is selectively delivered to the basolateral surface, where it internalizes transferrin via clathrin-coated pits and recycles back to the basolateral border. Mutant tailless receptors are sorted randomly in both the biosynthetic and endocytic pathways, indicating that the basolateral sorting of TR is dependent upon a signal located within the 61–amino acid cytoplasmic domain. To identify the basolateral sorting signal of TR, we have analyzed a series of mutant human TR expressed in MDCK cells. We find that residues 19–41 are sufficient for basolateral sorting from both the biosynthetic and endocytic pathways and that this is the only region of the TR cytoplasmic tail containing basolateral sorting information. The basolateral sorting signal is distinct from the YTRF internalization signal contained within this region and is not tyrosine based. Detailed functional analyses of the mutant TR indicate that residues 29–35 are the most important for basolateral sorting from the biosynthetic pathway. The structural requirements for basolateral sorting of internalized receptors from the endocytic pathway are not identical. The most striking difference is that alteration of G31DNS34 to YTRF impairs basolateral sorting of newly synthesized receptors from the biosynthetic pathway but not internalized receptors from the endocytic pathway. Also, mutations have been identified that selectively impair basolateral sorting of internalized TRs from the endocytic pathway without affecting basolateral sorting of newly synthesized receptors. These results imply that there are subtle differences in the recognition of the TR basolateral sorting signal by separate sorting machinery located within the biosynthetic and endocytic pathways.  相似文献   
89.
Y Li  J Kang    M S Horwitz 《Journal of virology》1997,71(2):1576-1582
The adenovirus (Ad) 14.7-kDa E3 protein (E3-14.7K), which can inhibit tumor necrosis factor alpha (TNF-alpha) cytolysis, was used to screen HeLa cell cDNA libraries for interacting proteins in the yeast two-hybrid system. A new member of the low-molecular-weight (LMW) GTP-binding protein family with Ras and ADP-ribosylation factor homology was discovered by this selection and has been named FIP-1 (14.7K-interacting protein). FIP-1 colocalized with Ad E3-14.7K in the cytoplasm especially near the nuclear membrane and in discrete foci on or near the plasma membrane. Its interaction with E3-14.7K was dependent on the FIP-1 GTP-binding domain. The stable expression of FIP-1 antisense message partially protected the cells from TNF-alpha cytolysis. FIP-1 was associated transiently with several unknown phosphorylated cellular proteins within 15 min after treatment with TNF-alpha. FIP-1 mRNA was expressed ubiquitously but at higher levels in human skeletal muscle, heart, and brain. In addition to homology to other LMW GTP-binding proteins, FIP-1 has regions of homology to two prokaryotic metalloproteases. However, there was no homology between FIP-1 and any of the recently isolated death proteins in the TNF-alpha or Fas/APO1 cytolytic pathway and no interaction with several members of the Bcl-2 family of inhibitors of apoptosis. These data suggest that FIP-1, as a cellular target for Ad E3-14.7K, is either a new intermediate on a previously described pathway or part of a novel TNF-alpha-induced cell death pathway. FIP-1 has two consensus sequences for myristoylation which would be expected to facilitate membrane association and also has sequences for Ser/Thr as well as Tyr phosphorylation that could affect its function.  相似文献   
90.
Y-organs are the ecdysial glands of crustaceans, responsible for synthesis and secretion of ecdysteroid hormones. For this purpose, the glands acquire cholesterol as obligate precursor entirely from circulating high-density lipoprotein (HDL). A preceding study provided evidence for the mechanism of acquisition: Y-organs take up cholesterol bound to HDL by an energy-requiring process, receptor-mediated absorptive endocytosis. The present study characterized the receptors involved utilizing isolated Y-organ membranes. HDL binding was saturable and specific; a dissociation constant (Kd) of 1.08 × 10?7 M and a binding maximum at equilibrium (Bmax) of 70 μg HDL protein/mg membrane protein, were obtained. Binding was decreased by protease and was dependent upon calcium. Y-organs are regulated negatively by a peptide hormone from the eystalks, molt-inhibiting hormone (MIH). Y-organ membranes from de-eyestalked crabs (MIH absent) exhibited the same Kd value as membranes from intact crabs, but a Bmax 17% higher. Thus, MIH activity apparently does not change the binding affinity of HDL, but decreases the number of binding sites. These results agree with our previous findings that MIH depresses ecdysteroid synthesis in part by inhibiting cholesterol uptake. Generally, Y-organ cells appear to contain receptors for HDL that are of high affinity and high binding capacity, similar to the characteristics reported for the binding of insect HDL (vitellogenin) to fat bodies and oocytes. © 1995 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号