首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   9篇
  2023年   1篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   5篇
  2008年   12篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有100条查询结果,搜索用时 78 毫秒
51.
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The synthesis, structure-activity relationships (SAR), metabolic stability, and structure-based design approach for this new class of compounds are discussed.  相似文献   
52.
53.
A novel series of non-nucleoside small molecules containing a tricyclic dihydropyridinone structural motif was identified as potent HCV NS5B polymerase inhibitors. Driven by structure-based design and building on our previous efforts in related series of molecules, we undertook extensive SAR studies, in which we identified a number of metabolically stable and very potent compounds in genotype 1a and 1b replicon assays. This work culminated in the discovery of several inhibitors, which combined potent in vitro antiviral activity against both 1a and 1b genotypes, metabolic stability, good oral bioavailability, and high C12 (PO)/EC50 ratios.  相似文献   
54.
Due to difficulties concerning morphological identification of planorbid snails of the genus Biomphalaria, and given a high variation of characters and in the organs with muscular tissue, we designed specific polymerase chain reaction (PCR) primers for Brazilian snail hosts of Schistosoma mansoni from available sequences of internal transcribed spacer 2 (ITS2) of the ribosomal RNA gene. From the previous sequencing of the ITS2 region, one primer was designed to anchor in the 5.8S conserved region and three other species-specific primers in the 28S region, flanking the ITS2 region. These four primers were simultaneously used in the same reaction (Multiplex-PCR), under high stringency conditions. Amplification of the ITS2 region of Biomphalaria snails produced distinct profiles (between 280 and 350 bp) for B. glabrata, B. tenagophila and B. straminea. The present study demonstrates that Multiplex-PCR of ITS2-DNAr showed to be a promising auxiliary tool for the morphological identification of Biomphalaria snails, the intermediate hosts of S. mansoni.  相似文献   
55.
Daidzin, a soy-derived biologically active natural product, has been reported to inhibit mitochondrial aldehyde dehydrogenase and suppress ethanol intake. This paper describes a method for the determination of daidzin in rat blood. After administration of daidzin, blood samples were periodically collected from awake, freely moving animals by a Culex automated blood sampler. Daidzin was extracted from 50 microl of diluted blood (blood and saline at a ratio of 1:1) with ethyl acetate. Chromatographic separation was achieved within 12 min using a microbore C(18) (100 x 1.0 mm) 3 microm column with a mobile phase containing 20 mM sodium acetate, 0.25 mM EDTA, pH 4.3, 4% methanol and 11% acetonitrile at a flow-rate of 90 microl/min. Detection was attained using a four-channel electrochemical detector with glassy carbon electrodes using oxidation potentials of +1100, 950, 850, 750 mV vs. Ag/AgCl. The limit of detection for daidzin in rat plasma was 5 ng/ml at a signal-to-noise ratio of 3:1. The extraction recovery of daidzin from rat plasma was over 74%. Linearity was obtained for the range of 25-1000 ng/ml. The intra- and inter-assay precisions were in the ranges of 2.7-6.6 and 1.9-3.7%, respectively. This method is suitable to routine in vivo monitoring of daidzin in rat plasma.  相似文献   
56.

Background

The apicomplexan parasite Cryptosporidium parvum is an emerging pathogen capable of causing illness in humans and other animals and death in immunocompromised individuals. No effective treatment is available and the genome sequence has recently been completed. This parasite differs from other apicomplexans in its lack of a plastid organelle, the apicoplast. Gene transfer, either intracellular from an endosymbiont/donor organelle or horizontal from another organism, can provide evidence of a previous endosymbiotic relationship and/or alter the genetic repertoire of the host organism. Given the importance of gene transfers in eukaryotic evolution and the potential implications for chemotherapy, it is important to identify the complement of transferred genes in Cryptosporidium.

Results

We have identified 31 genes of likely plastid/endosymbiont (n = 7) or prokaryotic (n = 24) origin using a phylogenomic approach. The findings support the hypothesis that Cryptosporidium evolved from a plastid-containing lineage and subsequently lost its apicoplast during evolution. Expression analyses of candidate genes of algal and eubacterial origin show that these genes are expressed and developmentally regulated during the life cycle of C. parvum.

Conclusions

Cryptosporidium is the recipient of a large number of transferred genes, many of which are not shared by other apicomplexan parasites. Genes transferred from distant phylogenetic sources, such as eubacteria, may be potential targets for therapeutic drugs owing to their phylogenetic distance or the lack of homologs in the host. The successful integration and expression of the transferred genes in this genome has changed the genetic and metabolic repertoire of the parasite.  相似文献   
57.
Biosensors have been under development for over 35 years and research in this field has become very popular for 15 years. Electrochemical biosensors are the oldest of the breed, yet sensors for only one analyte (glucose) have achieved widespread commercial success at the retail level. This perspective provides some cautions related to expectations for biosensors, the funding of science, and the wide gap between academic and commercial achievements for sensor research. The goal of this commentary is not to arrive at any particular truth, but rather to stimulate lively discussion.  相似文献   
58.
Previous work in predicting protein localization to the chloroplast organelle in plants led to the development of an artificial neural network-based approach capable of remarkable accuracy in its prediction (ChloroP). A common criticism against such neural network models is that it is difficult to interpret the criteria that are used in making predictions. We address this concern with several new prediction methods that base predictions explicitly on the abundance of different amino acid types in the N-terminal region of the protein. Our successful prediction accuracy suggests that ChloroP uses little positional information in its decision-making; an unexpected result given the elaborate ChloroP input scheme. By removing positional information, our simpler methods allow us to identify those amino acids that are useful for successful prediction. The identification of important sequence features, such as amino acid content, is advantageous if one of the goals of localization predictors is to gain an understanding of the biological process of chloroplast localization. Our most accurate predictor combines principal component analysis and logistic regression. Web-based prediction using this method is available online at http://apicoplast.cis.upenn.edu/pclr/.  相似文献   
59.
Plant vacuolar H(+)-translocating inorganic pyrophosphatases (V-PPases; EC 3.6.1.1) have been considered to constitute a family of functionally and structurally monotonous intrinsic membrane proteins. Typified by AVP1 (V. Sarafian, Y. Kim, R.J. Poole, P.A. Rea [1992] Proc Natl Acad Sci USA 89: 1775-1779) from Arabidopsis, all characterized plant V-PPases share greater than 84% sequence identity and catalyze K(+)-stimulated H(+) translocation. Here we describe the molecular and biochemical characterization of AVP2 (accession no. AF182813), a sequence-divergent (36% identical) K(+)-insensitive, Ca(2+)-hypersensitive V-PPase active in both inorganic pyrophosphate hydrolysis and H(+) translocation. The differences between AVP2 and AVP1 provide the first indication that plant V-PPases from the same organism fall into two distinct categories. Phylogenetic analyses of these and other V-PPase sequences extend this principle by showing that AVP2, rather than being an isoform of AVP1, is but one representative of a novel category of AVP2-like (type II) V-PPases that coexist with AVP1-like (type I) V-PPases not only in plants, but also in apicomplexan protists such as the malarial parasite Plasmodium falciparum.  相似文献   
60.
The sequence specific binding of the antibiotic (4S)-(+)-dihydrokikumycin B and its (4R)-(-) enantiomer, [(S)-1 and (R)-1, respectively] to DNA were characterized by DNase I and MPE footprinting, calorimetry, UV spectroscopy, circular dichroism, and 1H NMR studies. Footprinting analyses showed that both enantiomers [(S)-1 and (R)-1] bind to AT-rich regions of DNA. 1H NMR studies (ligand induced chemical shift changes and NOE differences) of the dihydrkikumycins with d-[CGCAATTGCG]2 show unambiguously that the N to C termini of the ligands are bound to 5'-A5T6T7-3' reading from left to right. From quantitative 1D-NOE studies, the AH2(5)-ligand H7 distance of complex A [(S)-1 plus decamer (which is bound more strongly)] and complex B [(R)-1 and decamer] are estimated to be 3.8 +/- 0.3 A and 4.9 +/- 0.4 A, respectively. This difference in binding properties is reflected in the thermodynamic profiles of the two enantiomeric ligands determined by a combination of spectroscopic and calorimetric techniques. The binding free energies (delta G degrees) of (S)-1 and (R)-1 to poly d(AT).poly d(AT) at 25 degrees C are -31.8 and -29.3 kJ mol-1, respectively while the corresponding binding enthalpies (delta H degrees) are -11.3 and -0.8 kJ mol-1. These data permit the construction of models for the binding of the enantiomeric dihydrokikumycins to DNA and account for the more efficient binding of the natural (S) isomer to DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号