首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   54篇
  323篇
  2015年   3篇
  2014年   2篇
  2013年   27篇
  2011年   9篇
  2010年   4篇
  2009年   9篇
  2008年   7篇
  2007年   10篇
  2006年   14篇
  2005年   14篇
  2004年   9篇
  2003年   11篇
  2002年   17篇
  2001年   9篇
  2000年   8篇
  1999年   12篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   7篇
  1987年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   8篇
  1976年   4篇
  1975年   10篇
  1974年   8篇
  1972年   3篇
  1971年   2篇
  1970年   5篇
  1915年   2篇
  1897年   2篇
  1883年   3篇
  1882年   5篇
  1881年   2篇
  1879年   6篇
  1878年   2篇
  1877年   2篇
排序方式: 共有323条查询结果,搜索用时 11 毫秒
291.
Phosphorylation of activated G-protein-coupled receptors and the subsequent binding of arrestin mark major molecular events of homologous desensitization. In the visual system, interactions between arrestin and the phosphorylated rhodopsin are pivotal for proper termination of visual signals. By using high resolution proton nuclear magnetic resonance spectroscopy of the phosphorylated C terminus of rhodopsin, represented by a synthetic 7-phosphopolypeptide, we show that the arrestin-bound conformation is a well ordered helix-loop structure connected to rhodopsin via a flexible linker. In a model of the rhodopsin-arrestin complex, the phosphates point in the direction of arrestin and form a continuous negatively charged surface, which is stabilized by a number of positively charged lysine and arginine residues of arrestin. Opposite to the mostly extended structure of the unphosphorylated C-terminal domain of rhodopsin, the arrestin-bound C-terminal helix is a compact domain that occupies a central position between the cytoplasmic loops and occludes the key binding sites of transducin. In conjunction with other binding sites, the helix-loop structure provides a mechanism of shielding phosphates in the center of the rhodopsin-arrestin complex and appears critical in guiding arrestin for high affinity binding with rhodopsin.  相似文献   
292.
A new comparative genome hybridization technology using NotI microarrays is described (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-enriched probes from tumor and normal genomic DNA with radically new NotI microarrays. A total of 181 NotI-binding loci of human chromosome 3 were assayed in 200 human malignant tissue samples from various organs: kidney, lung, breast, ovary, cervix, and prostate. The most significant portion (above 30%) of aberrations (deletions and methylation) were detected in NotI sites located in the MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, and ZIC4 genes. This indicates that they may be associated with cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results confirm that the proposed method can contribute to cancer genomics.  相似文献   
293.
The widely accepted hypothesis of vanadate action on cells postulates that this ion inhibits protein phosphatase(s) that dephosphorylates protein phosphotyrosine residues. This inhibition causes tyrosine hyperphosphorylation of cell proteins followed by changes in physiological action of phosphoproteins resulting in stimulation of cell proliferation, expression of protooncogenes, and transient cell transformation. We have found that treatment of human ovary carcinoma (CaOv) cells with vanadate causes the increase in total protein phosphorylation from 1.5- to 2.0-fold whereas the ratio between phosphoserine, phosphothreonine, and phosphotyrosine content remains unchanged. At the same time, enhancement of c-myc gene expression (not c-fos) was observed. Hence, the increase in the ratio of phosphotyrosine to phosphoserine and phosphothreonine is not an obligatory intermediate stage before vanadate-dependent activation of c-myc expression.  相似文献   
294.
Although the eukaryotic (eRF1) and prokaryotic (RF2) polypeptide release (translation termination) factors are functionally similar, they turn out to be very different in overall shape and architecture and in the location of key functional elements.  相似文献   
295.
296.
297.
298.
Essentual difficulties arise when base number in oligoguanylic blocks and location of these blocks along the polynucleotide chain need to be determined in the course of determination of the nucleotide sequences in ribonucleic acids. To overcome this difficulty it is suggested to take advantage of a recently discovered resistance of phosphodiester bond between kethoxalated G and its 3'-neighbour against T(2) RNase hydrolysis 1,2. The approach is illustrated by analysis of 5S RNA from rat liver. Sequences of general formula (Gp)(n)Xp were isolated from T(2) RNase hydrolysate of 5 S RNA rapidly and quantitatively. The information obtained greatly facilitates the whole procedure of sequencing. It is expected that the method proposed would be effective for analysis of 5 S and 4 S RNA and for highmolecular weight fragments of ribosomal and viral RNAs.  相似文献   
299.
A number of experimental approaches have been developed for identification of recognition (identity) sites in tRNAs. Along with them a theoretical methodology has been proposed by McClain et al that is based on concomitant analysis of all tRNA sequences from a given species. This approach allows an evaluation of nucleotide combinations present in isoacceptor tRNAs specific for the given amino acid, and not present in equivalent positions in cloverleaf structure in other tRNAs of the same organism. These elements predicted from computer analysis of the databank could be tested experimentally for their participation in forming recognition sites. The correlation between theoretical predictions and experimental data appeared promising. The aim of the present work consisted of introducing further improvements into McClain's procedure by: i), introducing into analysis a variable region in tRNAs which had not been previously considered; to accomplish this, 'normalization' of variable nucleotides was suggested, based on primary and tertiary structures of tRNAs; ii), developing a new procedure for comparison of patterns for synonymous and non-synonymous tRNAs from different organisms; iii), analysis of 3- and 4-positional contacts between tRNAs and enzymes in addition to a formerly used 2-positional model. A systematic application of McClain's procedure to mammalian, yeast and E coli tRNAs led to the following results: i), imitancy patterns for non-synonymous tRNAs of any amino acid specificity and from any organisms analysed so far overlap by no more than 30%, providing a structural basis for discrimination with high fidelity between cognate and non-cognate tRNAs; ii), the predicted identity sites are non-randomly distributed within tRNA molecules; the dominant role is ascribed to only two regions--anticodon and amino acid stem which are located far apart from one another at extremes of all tRNA molecules; iii), the imitancy patterns for synonymous tRNAs in lower (yeast) and higher (mammalian) eukaryotes are similar but not identical; iv), distribution of predicted identity sites in the cloverleaf structure in prokaryotes and eukaryotes is essentially different: in eubacterial tRNAs the major role in recognition plays anticodon and/or amino acid acceptor stem, whereas in eukaryotic (both unicellular and multicellular) tRNAs the remaining part of the molecules is also involved in recognition; v), the imitancy patterns of synonymous tRNAs from prokaryotes and eukaryotes are dissimilar, this observation leads to the prediction that the tRNA identity sites for the same amino acid in prokaryotes and eukaryotes may differ.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号