首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16739篇
  免费   1345篇
  国内免费   7篇
  18091篇
  2024年   24篇
  2023年   97篇
  2022年   251篇
  2021年   465篇
  2020年   254篇
  2019年   318篇
  2018年   436篇
  2017年   382篇
  2016年   617篇
  2015年   892篇
  2014年   984篇
  2013年   1157篇
  2012年   1502篇
  2011年   1478篇
  2010年   937篇
  2009年   710篇
  2008年   1091篇
  2007年   961篇
  2006年   960篇
  2005年   894篇
  2004年   781篇
  2003年   656篇
  2002年   664篇
  2001年   143篇
  2000年   122篇
  1999年   148篇
  1998年   148篇
  1997年   103篇
  1996年   79篇
  1995年   62篇
  1994年   56篇
  1993年   71篇
  1992年   65篇
  1991年   55篇
  1990年   67篇
  1989年   65篇
  1988年   43篇
  1987年   32篇
  1986年   27篇
  1985年   34篇
  1984年   27篇
  1983年   18篇
  1982年   19篇
  1981年   27篇
  1980年   20篇
  1979年   16篇
  1978年   23篇
  1977年   15篇
  1976年   10篇
  1975年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components—black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)—on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation.  相似文献   
992.
993.
Adenosine (Ado) is a ubiquitous metabolite that plays a prominent role as a paracrine homeostatic signal of metabolic imbalance within tissues. It quickly responds to various stress stimuli by adjusting energy metabolism and influencing cell growth and survival. Ado is also released by dead or dying cells and is present at significant concentrations in solid tumors. Ado signaling is mediated by Ado receptors (AdoR) and proteins modulating its concentration, including nucleoside transporters and Ado deaminases. We examined the impact of genetic manipulations of three Drosophila genes involved in Ado signaling on the incidence of somatic mosaic clones formed by the loss of heterozygosity (LOH) of tumor suppressor and marker genes. We show here that genetic manipulations with the AdoR, equilibrative nucleoside transporter 2 (Ent2), and Ado deaminase growth factor-A (Adgf-A) cause dramatic changes in the frequency of hyperplastic outgrowth clones formed by LOH of the warts (wts) tumor suppressor, while they have almost no effect on control yellow (y) clones. In addition, the effect of AdoR is dose-sensitive and its overexpression leads to the increase in wts hyperplastic epithelial outgrowth rates. Consistently, the frequency of mosaic hyperplastic outgrowth clones generated by the LOH of another tumor suppressor, discs overgrown (dco), belonging to the wts signaling pathway is also dependent on AdoR. Our results provide interesting insight into the maintenance of tissue homeostasis at a cellular level.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9435-2) contains supplementary material, which is available to authorized users.  相似文献   
994.
Transthyretin (TTR) is a visceral protein, which facilitates the transport of thyroid hormones in blood and cerebrospinal fluid. The homotetrameric structure of TTR enables the simultaneous binding of two thyroid hormones per molecule. Each TTR subunit provides a single cysteine residue (Cys10), which is frequently affected by oxidative post‐translational modifications. As Cys10 is part of the thyroid hormone‐binding channel within the TTR molecule, PTM of Cys10 may influence the binding of thyroid hormones. Therefore, we analysed the effects of Cys10 modification with sulphonic acid, cysteine, cysteinylglycine and glutathione on binding of triiodothyronine (T3) by molecular modelling. Furthermore, we determined the PTM pattern of TTR in serum of patients with thyroid disease by immunoprecipitation and mass spectrometry to evaluate this association in vivo. The in silico assays demonstrated that oxidative PTM of TTR resulted in substantial reorganization of the intramolecular interactions and also affected the binding of T3 in a chemotype‐ and site‐specific manner with S‐glutathionylation as the most potent modulator of T3 binding. These findings were supported by the in vivo results, which indicated thyroid function‐specific patterns of TTR with a substantial decrease in S‐sulphonated, S‐cysteinylglycinated and S‐glutathionylated TTR in hypothyroid patients. In conclusion, this study provides evidence that oxidative modifications of Cys10 seem to affect binding of T3 to TTR probably because of the introduction of a sterical hindrance and induction of conformational changes. As oxidative modifications can be dynamically regulated, this may represent a sensitive mechanism to adjust thyroid hormone availability.  相似文献   
995.
996.
997.
The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159–180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1–B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.  相似文献   
998.
SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands.  相似文献   
999.
Metallic nanoparticles (NPs) are able to modify the excitation and emission rates (plasmonic enhancement) of fluorescent molecules in their close proximity. In this work, we measured the emission spectra of 20 nm Gold Nanoparticles (AuNPs) fixed on a glass surface submerged in a solution of different fluorophores using a spectral camera and 2-photon excitation. While on the glass surface, we observed the presence in the emission at least 3 components: i) second harmonic signal (SHG), ii) a broad emission from AuNPS and iii) fluorescence arising from fluorophores nearby. When on the glass surface, we found that the 3 spectral components have different relative intensities when the incident direction of linear polarization was changed indicating different physical origins for these components. Then we measured by fluctuation correlation spectroscopy (FCS) the scattering and fluorescence signal of the particles alone and in a solution of 100 nM EGFP using the spectral camera or measuring the scattering and fluorescence from the particles. We observed occasional fluorescence bursts when in the suspension we added fluorescent proteins. The spectrum of these burst was devoid of the SHG and of the broad emission in contrast to the signal collected from the gold nanoparticles on the glass surface. Instead we found that the spectrum during the burst corresponded closely to the spectrum of the fluorescent protein. An additional control was obtained by measuring the cross-correlation between the reflection from the particles and the fluorescence arising from EGFP both excited at 488 nm. We found a very weak cross-correlation between the AuNPs and the fluorescence confirming that the burst originate from a few particles with a fluorescence signal.  相似文献   
1000.
Chronic tinnitus, or “ringing of the ears”, affects upwards of 15% of the adult population. Identifying a cost-effective and objective measure of tinnitus is needed due to legal concerns and disability issues, as well as for facilitating the effort to assess neural biomarkers. We developed a modified gap-in-noise (GIN) paradigm to assess tinnitus in mice using the auditory brainstem response (ABR). We then compared the commonly used acoustic startle reflex gap-prepulse inhibition (gap-PPI) and the ABR GIN paradigm in young adult CBA/CaJ mice before and after administrating sodium salicylate (SS), which is known to reliably induce a 16 kHz tinnitus percept in rodents. Post-SS, gap-PPI was significantly reduced at 12 and 16 kHz, consistent with previous studies demonstrating a tinnitus-induced gap-PPI reduction in this frequency range. ABR audiograms indicated thresholds were significantly elevated post-SS, also consistent with previous studies. There was a significant increase in the peak 2 (P2) to peak 1 (P1) and peak 4 (P4) to P1 amplitude ratios in the mid-frequency range, along with decreased latency of P4 at higher intensities. For the ABR GIN, peak amplitudes of the response to the second noise burst were calculated as a percentage of the first noise burst response amplitudes to quantify neural gap processing. A significant decrease in this ratio (i.e. recovery) was seen only at 16 kHz for P1, indicating the presence of tinnitus near this frequency. Thus, this study demonstrates that GIN ABRs can be used as an efficient, non-invasive, and objective method of identifying the approximate pitch and presence of tinnitus in a mouse model. This technique has the potential for application in human subjects and also indicates significant, albeit different, deficits in temporal processing in peripheral and brainstem circuits following drug induced tinnitus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号