首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   14篇
  2022年   3篇
  2021年   8篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2015年   15篇
  2014年   4篇
  2013年   10篇
  2012年   12篇
  2011年   5篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   8篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1950年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
141.
142.
143.
The relationship between intramyocellular (IMCL) and extramyocellular lipid (EMCL) accumulation and skeletal muscle insulin resistance is complex and dynamic. We examined the effect of a short-term (7-day) low-glycemic index (LGI) diet and aerobic exercise training intervention (EX) on IMCL and insulin sensitivity in older, insulin-resistant humans. Participants (66 ± 1 yr, BMI 33 ± 1 kg/m(2)) were randomly assigned to a parallel, controlled feeding trial [either an LGI (LGI/EX, n = 7) or high GI (HGI/EX, n = 8) eucaloric diet] combined with supervised exercise (60 min/day, 85% HR(max)). Insulin sensitivity was determined via 40 mU·m(-2)·min(-1) hyperinsulinemic euglycemic clamp and soleus IMCL and EMCL content was assessed by (1)H-MR spectroscopy with correction for fiber orientation. BMI decreased (kg/m(2) -0.6 ± 0.2, LGI/EX; -0.7 ± 0.2, HGI/EX P < 0.0004) after both interventions with no interaction effect of diet composition. Clamp-derived insulin sensitivity increased by 0.91 ± 0.21 (LGI/EX) and 0.17 ± 0.55 mg·kg(-1)·min(-1) (HGI/EX), P = 0.04 (effect of time). HOMA-IR was reduced by -1.1 ± 0.4 (LGI/EX) and -0.1 ± 0.2 (HGI/EX), P = 0.007 (effect of time), P = 0.02 (time × trial). Although both interventions increased IMCL content, (Δ: 2.3 ± 1.3, LGI/EX; 1.4 ± 0.9, HGI/EX, P = 0.03), diet composition did not significantly effect the increase. However, the LGI/EX group showed a robust increase in the [IMCL]/[EMCL] ratio compared with the HGI/EX group (Δ: 0.5 ± 0.2 LGI/EX vs. 0.07 ± 0.1, P = 0.03). The LGI/EX group also demonstrated greater reductions in [EMCL] than the HGI/EX group (Δ: -5.8 ± 3.4, LGI/EX; 2.3 ± 1.1, HGI/EX, P = 0.03). Changes in muscle lipids and insulin sensitivity were not correlated; however, the change in [IMCL]/[EMCL] was negatively associated with the change in FPI (r = -0.78, P = 0.002) and HOMA-IR (r = -0.61, P = 0.03). These data suggest that increases in the IMCL pool following a low glycemic diet and exercise intervention may represent lipid repartitioning from EMCL. The lower systemic glucose levels that prevail while eating a low glycemic diet may promote redistribution of lipid stores in the muscle.  相似文献   
144.
As a specific tumor marker, prostate-specific antigen (PSA) is widely used for the early diagnosis of prostate cancer. Sensitive and specific methods are required to improve the diagnostic accuracy of PSA detection. In the current study, we compared the immuno-polymerase chain reaction (immuno-PCR) method with the solid-phase proximity ligation assay (SP-PLA) with respect to the detection of PSA. Using oligonucleotide-labeled antibody probes, we used both immuno-PCR and SP-PLA to detect trace levels of PSA. The nucleic acid sequences can be monitored using real-time PCR. SP-PLA, however, was found to be superior in terms of both the detection limit and the dynamic range. To detect even lower levels of PSA, we used the loop-mediated isothermal amplification (LAMP) method to measure the levels of reporter DNA molecules in SP-PLA. The sensitivity of the LAMP method is 0.001 pM, which is approximately 100-fold higher than the sensitivities of the other assays. The results suggest that an SP-PLA- and LAMP-based protocol with oligonucleotide-labeled antibody probes may have great application in detecting PSA or other proteins present at trace levels.  相似文献   
145.
A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.  相似文献   
146.
The interplay between storms and sea level rise, and between ecology and sediment transport governs the behavior of rapidly evolving coastal ecosystems such as marshes and barrier islands. Sediment deposition during hurricanes is thought to increase the resilience of salt marshes to sea level rise by increasing soil elevation and vegetation productivity. We use mesocosms to simulate burial of Spartina alterniflora during hurricane‐induced overwash events of various thickness (0–60 cm), and find that adventitious root growth within the overwash sediment layer increases total biomass by up to 120%. In contrast to most previous work illustrating a simple positive relationship between burial depth and vegetation productivity, our work reveals an optimum burial depth (5–10 cm) beyond which burial leads to plant mortality. The optimum burial depth increases with flooding frequency, indicating that storm deposition ameliorates flooding stress, and that its impact on productivity will become more important under accelerated sea level rise. Our results suggest that frequent, low magnitude storm events associated with naturally migrating islands may increase the resilience of marshes to sea level rise, and in turn, slow island migration rates. Synthesis: We find that burial deeper than the optimum results in reduced growth or mortality of marsh vegetation, which suggests that future increases in overwash thickness associated with more intense storms and artificial heightening of dunes could lead to less resilient marshes.  相似文献   
147.
Transgenic mice, containing a chimeric gene in which the cDNA for phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C) (EC 4.1.1.32) was linked to the alpha-skeletal actin gene promoter, express PEPCK-C in skeletal muscle (1-3 units/g). Breeding two founder lines together produced mice with an activity of PEPCK-C of 9 units/g of muscle (PEPCK-C(mus) mice). These mice were seven times more active in their cages than controls. On a mouse treadmill, PEPCK-C(mus) mice ran up to 6 km at a speed of 20 m/min, whereas controls stopped at 0.2 km. PEPCK-C(mus) mice had an enhanced exercise capacity, with a VO(2max) of 156 +/- 8.0 ml/kg/min, a maximal respiratory exchange ratio of 0.91 +/- 0.03, and a blood lactate concentration of 3.7 +/- 1.0 mm after running for 32 min at a 25 degrees grade; the values for control animals were 112 +/- 21 ml/kg/min, 0.99 +/- 0.08, and 8.1 +/- 5.0 mm respectively. The PEPCK-C(mus) mice ate 60% more than controls but had half the body weight and 10% the body fat as determined by magnetic resonance imaging. In addition, the number of mitochondria and the content of triglyceride in the skeletal muscle of PEPCK-C(mus) mice were greatly increased as compared with controls. PEPCK-C(mus) mice had an extended life span relative to control animals; mice up to an age of 2.5 years ran twice as fast as 6-12-month-old control animals. We conclude that overexpression of PEPCK-C repatterns energy metabolism and leads to greater longevity.  相似文献   
148.
149.
Transposable elements of the mariner family are widespread among insects and other invertebrates, and initial analyses of their relationships indicated frequent occurrence of horizontal transfers between hosts. A specific PCR assay was used to screen for additional members of the irritans subfamily of mariners in more than 400 arthropod species. Phylogenetic analysis of cloned PCR fragments indicated that relatively recent horizontal transfers had occurred into the lineages of a fruit fly Drosophila ananassae, the horn fly Haematobia irritans, the African malaria vector mosquito Anopheles gambiae, and a green lacewing Chrysoperla plorabunda. Genomic dot-blot analysis revealed that the copy number in these species varies widely, from about 17,000 copies in the horn fly to three copies in D. ananassae. Multiple copies were sequenced from genomic clones from each of these species and four others with related elements. These sequences confirmed the PCR results, revealing extremely similar elements in each of these four species (greater than 88% DNA and 95% amino acid identity). In particular, the consensus sequence of the transposase gene of the horn fly elements differs by just two base pairs out of 1,044 from that of the lacewing elements. The mosquito lineage has diverged from the other Diptera for over 200 Myr, and the neuropteran last shared a common ancestor with them more than 265 Myr ago, so this high similarity implies that these transposons recently transferred horizontally into each lineage. Their presence in only the closest relatives in at least the lacewing lineage supports this hypothesis. Such horizontal transfers provide an explanation for the evolutionary persistence and widespread distribution of mariner transposons. We propose that the ability to transfer horizontally to new hosts before extinction by mutation in the current host constitutes the primary selective constraint maintaining the sequence conservation of mariners and perhaps other DNA-mediated elements.   相似文献   
150.
The effects of selective ibotenate lesions of the complete hippocampus (CHip), the hippocampal ventral pole (VP), or the medial prefrontal cortex (mPFC) in male rats were assessed on several measures related to energy regulation (i.e., body weight gain, food intake, body adiposity, metabolic activity, general behavioral activity, conditioned appetitive responding). The testing conditions were designed to minimize the nonspecific debilitating effects of these surgeries on intake and body weight. Rats with CHip and VP lesions exhibited significantly greater weight gain and food intake compared with controls. Furthermore, CHip-lesioned rats, but not rats with VP lesions, showed elevated metabolic activity, general activity in the dark phase of the light-dark cycle, and greater conditioned appetitive behavior, compared with control rats without these brain lesions. In contrast, rats with mPFC lesions were not different from controls on any of these measures. These results indicate that hippocampal damage interferes with energy and body weight regulation, perhaps by disrupting higher-order learning and memory processes that contribute to the control of appetitive and consummatory behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号