首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   6篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   9篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1993年   1篇
  1973年   1篇
  1962年   1篇
  1921年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
21.
The function of caveolae is hotly debated. It now seems clear that caveolae are stable membrane domains that are kept in place by the actin cytoskeleton. However, this stability can be perturbed, leading to caveolar internalization. Caveolae are important in the regulation of various signaling processes, such as nitric oxide activity, and in cholesterol efflux and cholesterol-ester uptake. Caveolin deficiency particularly affects the cardiovascular system and the lungs but, because the knockout mice are viable, none of the proposed functions appears to be essential. Rather than having a specific function, caveolae might be considered to be multifunctional organelles with a physiological role that varies depending on cell type and cellular needs.  相似文献   
22.
In the present study, we investigated possible sites of regulation of long-chain fatty acid (LCFA) oxidation in contracting human skeletal muscle. Leg plasma LCFA kinetics were determined in eight healthy men during bicycling (60 min, 65% peak oxygen uptake) with either high (H-FOX) or low (L-FOX) leg fat oxidation (H-FOX: 1,098 +/- 140; L-FOX: 494 +/- 84 micromol FA/min, P < 0.001), which was achieved by manipulating preexercise muscle glycogen (H-FOX: 197 +/- 21; L-FOX: 504 +/- 25 mmol/kg dry wt, P < 0.001). Several blood metabolites and hormones were kept nearly similar between trials by allocating a preexercise meal and infusing glucose intravenously during exercise. During exercise, leg plasma LCFA fractional extraction was identical between trials (H-FOX: 17.8 +/- 1.6; L-FOX: 18.2 +/- 1.8%, not significant), suggesting similar LCFA transport capacity in muscle. On the contrary, leg plasma LCFA oxidation was 99% higher in H-FOX than in L-FOX (421 +/- 47 vs. 212 +/- 37 micromol/min, P < 0.001). Probably due to the slightly higher (P < 0.01) plasma LCFA concentration in H-FOX than in L-FOX, leg plasma LCFA uptake was nonsignificantly (P = 0.17) higher (25%) in H-FOX than in L-FOX, yet the fraction of plasma LCFA uptake oxidized was 61% higher (P < 0.05) in H-FOX than in L-FOX. Accordingly, the muscle content of several lipid-binding proteins did not differ significantly between trials, although fatty acid translocase/CD36 and caveolin-1 were elevated (P < 0.05) by the high-intensity exercise and dietary manipulation allocated on the day before the experimental trial. The present data suggest that, in contracting human skeletal muscle with different fat oxidation rates achieved by manipulating preexercise glycogen content, transsarcolemmal transport is not limiting plasma LCFA oxidation. Rather, the latter seems to be limited by intracellular regulatory mechanisms.  相似文献   
23.
The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death—conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS.  相似文献   
24.

Background

Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown.

Results

We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples.

Conclusion

Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1552-y) contains supplementary material, which is available to authorized users.  相似文献   
25.
26.
27.
In non-obese diabetic (NOD) mice, diabetes incidence is reduced by a gluten-free diet. Gluten peptides, such as the compound gliadin, can cross the intestinal barrier and may directly affect pancreatic beta cells. We investigated the effects of enzymatically-digested gliadin in NOD mice, INS-1E cells and rat islets. Six injections of gliadin digest in 6-week-old NOD mice did not affect diabetes development, but increased weight gain (20% increase by day 100). In INS-1E cells, incubation with gliadin digest induced a dose-dependent increase in insulin secretion, up to 2.5-fold after 24 hours. A similar effect was observed in isolated rat islets (1.6-fold increase). In INS-1E cells, diazoxide reduced the stimulatory effect of gliadin digest. Additionally, gliadin digest was shown to decrease current through KATP-channels. A specific gliadin 33-mer had a similar effect, both on current and insulin secretion. Finally, INS-1E incubation with gliadin digest potentiated palmitate-induced insulin secretion by 13% compared to controls. Our data suggest that gliadin fragments may contribute to the beta-cell hyperactivity observed prior to the development of type 1 diabetes.  相似文献   
28.
29.
30.
A Vps10p domain makes up the entire luminal part of Sortilin, and this type of domain is the hallmark of a new family of neuronal receptors that target a variety of ligands, including neurotrophins and neuropeptides. We have shown that two structural features of the Vps10p domain, the N-terminal propeptide and the C-terminal segment of ten conserved cysteines (10CC), are key elements in the function of Sortilin. The propeptide has two functions. (i) It binds the mature part of Sortilin and prevents ligands in the biosynthetic pathway from binding to the uncleaved proreceptor, and (ii) it facilitates receptor transport in early Golgi compartments by a mechanism that does not depend on its ability to prevent ligand binding. In contrast, other Vps10p domain receptors, such as SorLA and SorCS3, do not need their propeptide for normal and swift processing. The 10CC segment constitutes an exchangeable module containing five conserved disulfide bridges, and using module-shuffling and truncations, we have shown that the 10CC segment is a major ligand-binding region in Sortilin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号