首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   22篇
  321篇
  2022年   2篇
  2021年   14篇
  2020年   5篇
  2019年   11篇
  2018年   10篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   19篇
  2013年   24篇
  2012年   31篇
  2011年   31篇
  2010年   20篇
  2009年   14篇
  2008年   16篇
  2007年   12篇
  2006年   20篇
  2005年   12篇
  2004年   14篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1975年   2篇
排序方式: 共有321条查询结果,搜索用时 0 毫秒
71.
A male zebra finch begins to learn to sing by memorizing a tutor's song during a sensitive period in juvenile development. Tutor song memorization requires molecular signaling within the auditory forebrain. Using microarray and in situ hybridizations, we tested whether the auditory forebrain at an age just before tutoring expresses a different set of genes compared with later life after song learning has ceased. Microarray analysis revealed differences in expression of thousands of genes in the male auditory forebrain at posthatch day 20 (P20) compared with adulthood. Furthermore, song playbacks had essentially no impact on gene expression in P20 auditory forebrain, but altered expression of hundreds of genes in adults. Most genes that were song‐responsive in adults were expressed at constitutively high levels at P20. Using in situ hybridization with a representative sample of 44 probes, we confirmed these effects and found that birds at P20 and P45 were similar in their gene expression patterns. Additionally, eight of the probes showed male–female differences in expression. We conclude that the developing auditory forebrain is in a very different molecular state from the adult, despite its relatively mature gross morphology and electrophysiological responsiveness to song stimuli. Developmental gene expression changes may contribute to fine‐tuning of cellular and molecular properties necessary for song learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   
72.
Defects in the mitochondrial protein frataxin are responsible for Friedreich ataxia, a neurodegenerative and cardiac disease that affects 1:40,000 children. Here, we present the crystal structures of the iron-free and iron-loaded frataxin trimers, and a single-particle electron microscopy reconstruction of a 24 subunit oligomer. The structures reveal fundamental aspects of the frataxin mechanism. The trimer has a central channel in which one atom of iron binds. Two conformations of the channel with different metal-binding affinities suggest that a gating mechanism controls whether the bound iron is delivered to other proteins or transferred to detoxification sites. The trimer constitutes the basic structural unit of the 24 subunit oligomer. The architecture of this oligomer and several features of the trimer structure demonstrate striking similarities to the iron-storage protein ferritin. The data reveal how stepwise assembly provides frataxin with the structural flexibility to perform two functions: metal delivery and detoxification.  相似文献   
73.
A deficiency in major seed storage proteins is associated with a nearly two-fold increase in sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris). Their mature seed proteome was compared by an approach combining label-free quantification by spectral counting, 2-DE, and analysis of selective extracts. Lack of phaseolin, phytohemagglutinin and arcelin was mainly compensated by increases in legumin, α-amylase inhibitors and mannose lectin FRIL. Along with legumin, albumin-2, defensin and albumin-1 were major contributors to the elevated sulfur amino acid content. Coordinate induction of granule-bound starch synthase I, starch synthase II-2 and starch branching enzyme were associated with minor alteration of starch composition, whereas increased levels of UDP-glucose 4-epimerase were correlated with a 30% increase in raffinose content. Induction of cell division cycle protein 48 and ubiquitin suggested enhanced ER-associated degradation. This was not associated with a classical unfolded protein response as the levels of ER HSC70-cognate binding protein were actually reduced in the mutant. Repression of rab1 GTPase was consistent with decreased traffic through the secretory pathway. Collectively, these results have implications for the nutritional quality of common bean, and provide information on the pleiotropic phenotype associated with storage protein deficiency in a dicotyledonous seed.  相似文献   
74.
75.
A flow-injection system with an organophosphorus-hydrolase (OPH)-biosensor detector has been developed and characterized for the rapid detection of organophosphorus (OP) nerve agents. The enzyme was immobilized onto a thin-film gold detector through a cystamine-glutaraldehyde coupling. Factors influencing the performance were optimized. The resulting flow system offered a fast, sensitive, selective, and stable response. The peak current increased linearly with the concentration of paraoxon and methyl parathion over the 1-10 microM range (sensitivity, 2.29 and 1.04 nA/microM, respectively). The OPH-biosensor flow injection systems offered low detection limits (e.g. 0.1 microM paraoxon), along with a good precision (R.S.D. of 3.6% for 20 successive injections of a 1.0 microM paraoxon solution). The OPH-biosensor flow detector offers great promise for rapid field screening of OP pesticides and nerve agents.  相似文献   
76.
Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imaging of the autofluorescence intensities of fluorescent flavoproteins and NAD(P)H, showing inverse fluorescence behavior. The flavoprotein signal was colocalized with the potentiometric mitochondria-specific dye dimethylaminostyryl pyridyl methyl iodide (DASPMI), or with MitoTracker™ Green FM, a constitutive marker for mitochondria. Within individual myofibers we detected topological mitochondrial subsets with distinct flavoprotein autofluorescence levels, equally responding to induced rate changes of the oxidative phosphorylation. The flavoprotein autofluorescence levels of these subsets differed by a factor of four. This heterogeneity was substantiated by flow-cytometric analysis of flavoprotein and DASPMI fluorescence changes of individual mitochondria isolated from mice skeletal muscle. Our data provide direct evidence that mitochondria in single myofibers are distinct subsets at the level of an intrinsic fluorescent marker of the mitochondrial NAD–redox system. Under the present experimental conditions these subsets show similar functional responses.  相似文献   
77.
78.
Animal movements are of great importance in studying home ranges, migration routes, resource selection, and social interactions. The Global Positioning System provides relatively continuous animal tracking over time and long distances. Nevertheless, the continuous trajectory of an animal’s movement is usually only observed at discrete time points. Brownian bridge models have been used to model movement of an animal between two observed locations within a reasonably short time interval. Assuming that animals are in perpetual motion, these models ignore inactivity such as resting or sleeping. Using the latest developments in applied probability, we propose a moving–resting process model where an animal is assumed to alternate between a moving state, during which it moves in a Brownian motion, and a resting state, during which it does not move. Theoretical properties of the process are studied as a first step towards more realistic models for animal movements. Analytic expressions are derived for the distribution of one increment and two consecutive increments, and are validated with simulations. The induced bridge model conditioning on the starting and end points is used to compute an animal’s probability of occurrence in an observation area during the time of observation, which has wide applications in wildlife behavior research.  相似文献   
79.
RomA is a SET-domain containing protein lysine methyltransferase encoded by the Gram-negative bacterium Legionella pneumophila. It is exported into human host cells during infection and has been previously shown to methylate histone H3 at lysine 14 [Rolando et al. (2013), Cell Host Microbe, 13, 395–405]. Here, we investigated the substrate specificity of RomA on peptide arrays showing that it mainly recognizes a G-K-X-(PA) sequence embedded in a basic amino acid sequence context. Based on the specificity profile, we searched for possible additional RomA substrates in the human proteome and identified 34 novel peptide substrates. For nine of these, the corresponding full-length protein or protein domains could be cloned and purified. Using radioactive and antibody-based methylation assays, we showed that seven of them are methylated by RomA, four of them strongly, one moderately, and two weakly. Mutagenesis confirmed for the seven methylated proteins that methylation occurs at target lysine residues fitting to the specificity profile. Methylation of one novel substrate (AROS) was investigated in HEK293 cells overexpressing RomA and during infection with L. pneumophila. Methylation could be detected in both conditions, confirming that RomA methylates non-histone proteins in human cells. Our data show that the bacterial methyltransferase RomA methylates also human non-histone proteins suggesting a multifaceted role in the infection process.  相似文献   
80.

Background

Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation.

Principal Findings

We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean.

Significance

This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号