首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2316篇
  免费   242篇
  国内免费   1篇
  2023年   11篇
  2022年   27篇
  2021年   51篇
  2020年   30篇
  2019年   39篇
  2018年   41篇
  2017年   38篇
  2016年   80篇
  2015年   125篇
  2014年   128篇
  2013年   159篇
  2012年   157篇
  2011年   193篇
  2010年   131篇
  2009年   105篇
  2008年   113篇
  2007年   155篇
  2006年   98篇
  2005年   117篇
  2004年   124篇
  2003年   126篇
  2002年   103篇
  2001年   32篇
  2000年   19篇
  1999年   29篇
  1998年   20篇
  1997年   17篇
  1996年   16篇
  1995年   17篇
  1994年   21篇
  1993年   20篇
  1992年   18篇
  1991年   22篇
  1990年   16篇
  1989年   23篇
  1988年   17篇
  1987年   12篇
  1986年   11篇
  1985年   13篇
  1984年   11篇
  1983年   7篇
  1982年   5篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1974年   9篇
  1970年   3篇
排序方式: 共有2559条查询结果,搜索用时 62 毫秒
991.
Toll-like receptor (TLR)-dependent pathways control the production of IFNalphabeta, a key cytokine in innate immune control of viruses including mouse cytomegalovirus (MCMV). The lymphotoxin (LT) alphabeta-LTbeta receptor signaling pathway is also critical for defense against MCMV and thought to aid in the IFNbeta response. We find that upon MCMV infection, mice deficient for lymphotoxin (LT)alphabeta signaling cannot mount the initial part of a biphasic IFNalphabeta response, but show normal levels of IFNalphabeta during the sustained phase of infection. Significantly, the LTalphabeta-dependent, IFNalphabeta response is independent of TLR signaling. B, but not T, cells expressing LTbeta are essential for promoting the initial IFNalphabeta response. LTbetaR expression is required strictly in splenic stromal cells for initial IFNalphabeta production to MCMV and is dependent upon the NF-kappaB-inducing kinase (NIK). These results reveal a TLR-independent innate host defense strategy directed by B cells in communication with stromal cells via the LTalphabeta cytokine system.  相似文献   
992.
993.
Wild species use habitats that vary in risk across space and time. This risk can derive from natural predators and also from direct and indirect human pressures. A starving forager will often take risks that a less hungry forager would not. At a highly seasonal and human-modified site, we predicted that arboreal samango monkeys (Cercopithecus albogularis labiatus) would show highly flexible, responsive, risk-sensitive foraging. We first determined how monkeys use horizontal and vertical space across seasons to evaluate if high-risk decisions (use of gardens and ground) changed with season, a proxy for starvation risk. Then, during a subsequent winter, we offered equal feeding opportunities (in the form of high-value, raw peanuts) in both gardens and forest to see if this short-term change in food availability and starvation risk affected monkeys’ foraging decisions. We found that during the food-scarce winter, monkeys foraged outside indigenous forest and in gardens, where they fed on exotic species, especially fallen acorns (Quercus spp.), despite potential threats from humans. Nevertheless, and as predicted, when given the choice of foraging on high-value foods in gardens vs. forest during our artificial foraging experiment, monkeys showed a preference for a safer forest habitat. Our experiment also indicated monkeys’ sensitivity to risk in the lower vertical strata of both habitats, despite their previous extensive use of the ground. Our findings support one of the central tenets of optimal foraging theory: that risk of starvation and sensitivity to the variation in food availability can be as important drivers of behavior as risk of predation.  相似文献   
994.
995.
996.
Plants can defend themselves against herbivores through activation of defensive pathways and attraction of third‐trophic‐level predators and parasites. Trophic cascades that mediate interactions in the phytobiome are part of a larger dynamic including the pathogens of the plant itself, which are known to greatly influence plant defenses. As such, we investigated the impact of a phloem‐limited bacterial pathogen, Candidatus Liberibacter asiaticus (CLas), in cultivated citrus rootstock on a well‐studied belowground tritrophic interaction involving the attraction of an entomopathogenic nematode (EPN), Steinernema diaprepesi, to their root‐feeding insect hosts, Diaprepes abbreviatus larvae. Using belowground olfactometers, we show how CLas infection interferes with this belowground interaction by similarly inducing the release of a C12 terpene, pregeijerene, and disconnecting the association of the terpene with insect presence. D. abbreviatus larvae that were not feeding but in the presence of a CLas‐infected plant were more likely to be infected by EPN than those near uninfected plants. Furthermore, nonfeeding larvae associated with CLas‐infected plants were just as likely to be infected by EPN as those near noninfected plants with D. abbreviatus larval damage. Larvae of two weevil species, D. abbreviatus and Pachnaeus litus, were also more attracted to plants with infection than to uninfected plants. D. abbreviatus larvae were most active when exposed to pregeijerene at a concentration of 0.1 μg/μl. We attribute this attraction to CLas‐infected plants to the same signal previously thought to be a herbivore‐induced plant volatile specifically induced by root‐feeding insects, pregeijerene, by assessing volatiles collected from the roots of infected plants and uninfected plants with and without feeding D. abbreviatus. Synthesis. Phytopathogens can influence the structuring of soil communities extending to the third trophic level. Field populations of EPN may be less effective at host‐finding using pregeijerene as a cue in citrus grove agroecosystems with high presence of CLas infection.  相似文献   
997.
The pH dependence of basal and calmodulin- (CaM-) stimulated neuronal nitric oxide synthase (nNOS) reduction of 2,6-dichloroindophenol (DCIP) and cytochrome c(3+) was investigated. The wave-shaped log V versus pH profile revealed that optimal DCIP reduction occurred when a group, pK(a) of 7.6-7.8, was ionized. The (V/K)(NADPH) and (V/K)(DCIP) versus pH profiles increased with the protonation of a group with a pK(a) of 6.5 or 5.9 and the ionization of two groups with the same pK(a) of 7.5 or 7.0, respectively. (V/K)(DCIP) decreased with the ionization of a group, pK(a) of 9.0. Similar V, (V/K)(NADPH), and (V/K)(DCIP) versus pH profiles for DCIP reduction were obtained with and without CaM, indicating that CaM does not influence ionizable groups involved in catalysis or substrate binding. In contrast, CaM affected the pH dependence of cytochrome c(3+) reduction. The wave-shaped log V versus pH profile for basal cytochrome c(3+) reduction revealed that ionization of a group, pK(a) of 8.6, increased catalysis. Log V for CaM-stimulated cytochrome c(3+) reduction displayed a bell-shaped pH dependence with the protonation of a group with a pK(a) of 6.4 and the ionization of a group with a pK(a) of 9.3, resulting in a loss of activity. The log(V/K)(cytc) versus pH profiles with and without CaM were bell-shaped with the ionization of a group at pK(a) of 7.1 or 7.6 (CaM) or pK(a) of 9.4 or 9.6 (CaM), increasing and decreasing (V/K)(cytc). These results suggest that CaM may change the nature of the rate-limiting catalytic steps or ionizable groups involved in cytochrome c(3+) reduction.  相似文献   
998.
999.
OmpR and EnvZ comprise a two-component system that regulates the porin genes ompF and ompC in response to changes in osmolarity. EnvZ is autophosphorylated by intracellular ATP on a histidine residue, and it transfers the phosphoryl group to an aspartic acid residue of OmpR. EnvZ can also dephosphorylate phospho-OmpR (OmpR-P) to control the cellular level of OmpR-P. At low osmolarity, OmpR-P levels are low because of either low EnvZ kinase or high EnvZ phosphatase activities. At high osmolarity, OmpR-P is elevated. It has been proposed that EnvZ phosphatase is the activity that is regulated by osmolarity. OmpR is a two-domain response regulator; phosphorylation of OmpR increases its affinity for DNA, and DNA binding stimulates phosphorylation. The step that is affected by DNA depends upon the phosphodonor employed. In the present work, we have used fluorescence anisotropy and phosphotransfer assays to examine OmpR interactions with EnvZ. Our results indicate that phosphorylation greatly reduces the affinity of OmpR for the kinase, whereas DNA does not affect their interaction. The results presented cast serious doubts on the role of the EnvZ phosphatase in response to signaling in vivo.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号