首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2266篇
  免费   220篇
  国内免费   1篇
  2487篇
  2023年   14篇
  2022年   27篇
  2021年   51篇
  2020年   30篇
  2019年   39篇
  2018年   41篇
  2017年   38篇
  2016年   79篇
  2015年   125篇
  2014年   128篇
  2013年   157篇
  2012年   157篇
  2011年   193篇
  2010年   131篇
  2009年   105篇
  2008年   113篇
  2007年   155篇
  2006年   98篇
  2005年   117篇
  2004年   124篇
  2003年   126篇
  2002年   103篇
  2001年   31篇
  2000年   11篇
  1999年   29篇
  1998年   20篇
  1997年   17篇
  1996年   15篇
  1995年   17篇
  1994年   18篇
  1993年   19篇
  1992年   14篇
  1991年   14篇
  1990年   13篇
  1989年   17篇
  1988年   11篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1981年   11篇
  1980年   5篇
  1979年   4篇
  1977年   4篇
  1976年   4篇
  1974年   9篇
  1973年   2篇
  1970年   3篇
排序方式: 共有2487条查询结果,搜索用时 9 毫秒
951.
Giant endopolyploid nuclei (>16n) can spontaneously fragment by endomitosis (nuclear internal division) into near‐diploid cells with reproductive capacity (depolyploidization), and endotetra/octopolyploidy can undergo chromosome‐visible meiotic‐like genome reductional divisions also to replicative subcells. These unconventional divisions are associated with production of aneuploidy, which led to the question in this study of whether endopolyploidy, in general, can contribute genetic variability to tumorigenic potential. For this purpose, non‐proliferative endopolyploid cells (range: 4n–32n) in near‐senescence of normal diploid cell strains were analysed for nuclear–morphogenic changes associated with the presence of diploid‐sized nuclei in the cytoplasm. A one‐by‐one nuclear‐cutoff process gave rise to reproducing genome‐reduced cells. It was concluded that these unconventional cell divisions are, indeed, suspects of originating genetic variability. Details of these irregular mitoses were compared to ‘mitotic–meiosis’ in primitive organisms, which suggested activation of an ancestral trait in the mammalian cells.  相似文献   
952.
Central stimulant (CS) therapy is a cornerstone in treatment of adult attention-deficit/hyperactivity disorder (ADHD). Substance use disorder (SUD) is a common comorbid disorder of ADHD and might complicate the treatment. Our main objectives were to investigate the prevalence of SUD during CS treatment, and identify variables associated with SUD during the treatment. The collection of data was based on a naturalistic, retrospective approach using the medical records of a cohort of all adult ADHD patients (N = 117) starting treatment with CS in a specific catchment area in the period 1997 to May 2005. A logistic regression model was applied to identify possible predictors of SUD during CS treatment. The study showed no onset of SUD during the CS treatment in the group of patients without comorbid SUD at baseline (mean CS treatment length 41.1 months). In the group of patients with comorbid SUD at baseline, 58.5 % had one or more relapses of SUD during treatment (mean CS treatment length 27.9 months). Younger age and comorbid antisocial personality disorder were associated with relapse. In a logistic regression analysis, cannabis abstinence for more than 12 months was a negative predictor for relapse of SUD. CS treatment does not precipitate onset of SUD in adults without previous SUD.  相似文献   
953.
In acidic, coal mining lake sediments, facultatively anaerobic Acidiphilium species are probably involved in the reduction of Fe(III). Previous results indicate that these bacteria can co-respire O2 and Fe(III). In this study, we investigated the capacity of the sediment microbiota to reduce Fe(III) in the presence of O2 at pH 3. In sediment microcosms with 4% O2 in the headspace, the concentration of Fe(II) increased at a rate of 1.03 micromol (g wet sediment)-1 day-1 within the first 7 days of incubation which was similar to the rate obtained with controls incubated under anoxic conditions. However, in microcosms incubated under air, Fe(II) was consumed after a lag phase of 8 h with a rate of 2.66 micromol (g wet sediment)-1 day-1. Acidiphilium cryptum JF-5, isolated from this sediment, reduced soluble Fe(III) with either 4 or 21% O2 in the headspace, and concomitantly consumed O2. However, the rate of Fe(II) formation normalized for cell density decreased under oxic conditions. Schwertmannite, the predominant Fe(III)-mineral of this sediment, was also reduced by A. cryptum JF-5 under oxic conditions. The rate of Fe(II) formation by A. cryptum JF-5 decreased after transfer from preincubation under air in medium lacking Fe(III). Acidiphilium cryptum JF-5 did not form Fe(II) when preincubated under air and transferred to anoxic medium containing Fe(III) and chloramphenicol, an inhibitor of protein synthesis. These results indicate that: (i) the reduction of Fe(III) can occur at low O2 concentrations in acidic sediments; (ii) Fe(II) can be oxidized at O2 concentrations near saturation; and (iii) the enzyme(s) responsible for the reduction of Fe(III) in A. cryptum JF-5 are not constitutive.  相似文献   
954.
OmpR and EnvZ comprise a two-component system that regulates the porin genes ompF and ompC in response to changes in osmolarity. EnvZ is autophosphorylated by intracellular ATP on a histidine residue, and it transfers the phosphoryl group to an aspartic acid residue of OmpR. EnvZ can also dephosphorylate phospho-OmpR (OmpR-P) to control the cellular level of OmpR-P. At low osmolarity, OmpR-P levels are low because of either low EnvZ kinase or high EnvZ phosphatase activities. At high osmolarity, OmpR-P is elevated. It has been proposed that EnvZ phosphatase is the activity that is regulated by osmolarity. OmpR is a two-domain response regulator; phosphorylation of OmpR increases its affinity for DNA, and DNA binding stimulates phosphorylation. The step that is affected by DNA depends upon the phosphodonor employed. In the present work, we have used fluorescence anisotropy and phosphotransfer assays to examine OmpR interactions with EnvZ. Our results indicate that phosphorylation greatly reduces the affinity of OmpR for the kinase, whereas DNA does not affect their interaction. The results presented cast serious doubts on the role of the EnvZ phosphatase in response to signaling in vivo.  相似文献   
955.
Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV) infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV) we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming “nodular inflammatory foci” (NIF) in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC) interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control.  相似文献   
956.
Explorations into the α6-containing nicotinic acetylcholine receptors (α6* nAChRs) as putative drug targets have been severely hampered by the inefficient functional expression of the receptors in heterologous expression systems. In this study, the molecular basis for the problem was investigated through the construction of chimeric α6/α3 and mutant α3 and α6 subunits and functional characterization of these co-expressed with β4 or β4β3 subunits in tsA201 cells in a fluorescence-based assay and in Xenopus oocytes using two-electrode voltage clamp electrophysiology. Substitution of a small C-terminal segment in the second intracellular loop or the Phe223 residue in transmembrane helix 1 of α6 with the corresponding α3 segment or residue was found to enhance α6β4 functionality in tsA201 cells significantly, in part due to increased cell surface expression of the receptors. The gain-of-function effects of these substitutions appeared to be additive since incorporation of both α3 elements into α6 resulted in assembly of α6β4* receptors exhibiting robust functional responses to acetylcholine. The pharmacological properties exhibited by α6β4β3 receptors comprising one of these novel α6/α3 chimeras in oocytes were found to be in good agreement with those from previous studies of α6* nAChRs formed from other surrogate α6 subunits or concatenated subunits and studies of other heteromeric nAChRs. In contrast, co-expression of this α6/α3 chimera with β2 or β2β3 subunits in oocytes did not result in efficient formation of functional receptors, indicating that the identified molecular elements in α6 could be specific impediments for the expression of functional α6β4* nAChRs.  相似文献   
957.
Hydrogen bonds (H-bonds) are crucial for the stability of the peptide-major histocompatibility complex (MHC) complex. In particular, the H-bonds formed between the peptide ligand and the MHC class II binding site appear to have a great influence on the half-life of the complex. Here we show that functional groups with the capacity to disrupt hydrogen bonds (e.g. -OH) can efficiently catalyze ligand exchange reactions on HLA-DR molecules. In conjunction with simple carrier molecules (such as propyl or benzyl residues), they trigger the release of low affinity ligands, which permits the rapid binding of peptides with higher affinity. Similar to HLA-DM, these compounds are able to influence the MHC class II ligand repertoire. In contrast to HLA-DM, however, these simple small molecules are still active at neutral pH. Under physiological conditions, they increase the number of "peptide-receptive" MHC class II molecules and facilitate exogenous peptide loading of dendritic cells. The drastic acceleration of the ligand exchange on these antigen presenting cells suggests that, in general, availability of H-bond donors in the extracellular milieu controls the rate of MHC class II ligand exchange reactions on the cell surface. These molecules may therefore be extremely useful for the loading of antigens onto dendritic cells for therapeutic purposes.  相似文献   
958.
959.
 Chicken gizzard smooth muscle has often been used as a source of proteins of the contractile and cytoskeletal apparatus. In the present study, we isolated a hitherto unknown doublet of proteins, with apparent molecular weights of 200 kDa, from embryonic chicken gizzard and showed its association with the microtubular cytoskeleton by cosedimentation with microtubules (MTs) and by immunofluorescence staining of cultured cells. Immunoblot analysis also revealed the ubiquitous expression of this protein in all embryonic chicken tissues examined. Molecular cloning techniques allowed its identification as the chicken homologue of the microtubule-associated protein 4 (MAP4), known from mammalian species, and revealed approximately 90% of its amino acid sequence. MAP4 is the major MAP of non-neuronal tissues and cross-species comparisons clearly demonstrated its highly conserved overall structure, consisting of a basic C-terminal MT-binding region and an acidic N-terminal projection domain of unknown function. Despite these conserved features, overall sequence homologies to its mammalian counterparts are rather low and focused to distinct regions of the molecule. Among these are a conserved 18-amino acid motif, which is known to mediate binding to MTs and a part of the MT-binding domain known as the proline-rich region, which is thought to be the regulatory domain of MAP4. The N-terminal 59 amino acids are a conserved and unique feature of the MAP4 sequence and might be an indication that MAP4 performs other functions besides the enhancement of MT assembly. Accepted: 13 March 1996  相似文献   
960.
The investigation of lung dynamics on alveolar scale is crucial for the understanding and treatment of lung diseases, such as acute lung injury and ventilator induced lung injury, and to promote the development of protective ventilation strategies. One approach to this is the establishment of numerical simulations of lung tissue mechanics where detailed knowledge about three‐dimensional alveolar structure changes during the ventilation cycle is required. We suggest four‐dimensional optical coherence tomography (OCT) imaging as a promising modality for visualizing the structural dynamics of single alveoli in subpleural lung tissue with high temporal resolution using a mouse model. A high‐speed OCT setup based on Fourier domain mode locked laser technology facilitated the acquisition of alveolar structures without noticeable motion artifacts at a rate of 17 three‐dimensional stacks per ventilation cycle. The four‐dimensional information, acquired in one single ventilation cycle, allowed calculating the volume‐pressure curve and the alveolar compliance for single alveoli. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号