首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2267篇
  免费   218篇
  国内免费   1篇
  2023年   11篇
  2022年   16篇
  2021年   51篇
  2020年   31篇
  2019年   39篇
  2018年   42篇
  2017年   38篇
  2016年   80篇
  2015年   128篇
  2014年   128篇
  2013年   160篇
  2012年   158篇
  2011年   193篇
  2010年   131篇
  2009年   105篇
  2008年   113篇
  2007年   155篇
  2006年   98篇
  2005年   117篇
  2004年   125篇
  2003年   126篇
  2002年   103篇
  2001年   31篇
  2000年   11篇
  1999年   28篇
  1998年   20篇
  1997年   17篇
  1996年   15篇
  1995年   17篇
  1994年   19篇
  1993年   19篇
  1992年   14篇
  1991年   14篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   11篇
  1980年   5篇
  1979年   4篇
  1977年   4篇
  1976年   4篇
  1974年   9篇
  1973年   2篇
  1970年   3篇
排序方式: 共有2486条查询结果,搜索用时 31 毫秒
71.
Human norovirus (huNoV) and hepatitis A virus (HAV) have been involved in several produce-associated outbreaks and identified as major food-borne viral etiologies. In this study, the survival of huNoV surrogates (murine norovirus [MNV] and Tulane virus [TV]) and HAV was investigated on alfalfa seeds during storage and postgermination. Alfalfa seeds were inoculated with MNV, TV, or HAV with titers of 6.46 ± 0.06 log PFU/g, 3.87 ± 0.38 log PFU/g, or 7.01 ± 0.07 log 50% tissue culture infectious doses (TCID50)/g, respectively. Inoculated seeds were stored for up to 50 days at 22°C and sampled during that storage period on days 0, 2, 5, 10, and 15. Following storage, virus presence was monitored over a 1-week germination period. Viruses remained infectious after 50 days, with titers of 1.61 ± 0.19 log PFU/g, 0.85 ± 0.21 log PFU/g, and 3.43 ± 0.21 log TCID50/g for MNV, TV, and HAV, respectively. HAV demonstrated greater persistence than MNV and TV, without a statistically significant reduction over 20 days (<1 log TCID50/g); however, relatively high levels of genomic copies of all viruses persisted over the testing time period. Low titers of viruses were found on sprouts and were located in all tissues as well as in sprout-spent water sampled on days 1, 3, and 6 following seed planting. Results revealed the persistence of viruses in seeds for a prolonged period of time, and perhaps of greater importance these data suggest the ease of which virus may transfer from seeds to sprouts and spent water during germination. These findings highlight the importance of sanitation and prevention procedures before and during germination.  相似文献   
72.
Bax Inhibitor-1 (BI-1) is an evolutionarily conserved six-transmembrane domain endoplasmic reticulum (ER)-localized protein that protects against ER stress-induced apoptotic cell death. This function is closely connected to its ability to lower steady-state ER Ca2+ levels. Recently, we elucidated BI-1's Ca2+-channel pore in the C-terminal part of the protein and identified the critical amino acids of its pore. Based on these insights, a Ca2+-channel pore-dead mutant BI-1 (BI-1D213R) was developed. We determined whether BI-1 behaves as a bona fide H+/Ca2+ antiporter or as an ER Ca2+-leak channel by investigating the effect of pH on unidirectional Ca2+-efflux rates. At pH 6.8, wild-type BI-1 expression in BI-1−/− cells increased the ER Ca2+-leak rate, correlating with its localization in the ER compartment. In contrast, BI-1D231R expression in BI-1−/−, despite its ER localization, did not increase the ER Ca2+-leak rate. However, at pH < 6.8, the BI-1-mediated ER Ca2+ leak was blocked. Finally, a peptide representing the Ca2+-channel pore of BI-1 promoting Ca2+ flux from the ER was used. Lowering the pH from 6.8 to 6.0 completely abolished the ability of the BI-1 peptide to mediate Ca2+ flux from the ER. We propose that this pH dependence is due to two aspartic acid residues critical for the function of the Ca2+-channel pore and located in the ER membrane-dipping domain, which facilitates the protonation of these residues.  相似文献   
73.
A soil enrichment culture of the sulfate-reducers Desulfosporosinus auripigmenti and Citrobacter freundii and of fermentative bacteria from a former uranium-mining site was studied for its metal retention potential by promoting metal sulfide precipitation. The culture could tolerate up to 30 mM Ni and 40 mM Co. XRD and TEM analyses revealed the formation of amorphous NiS together with nanocrystalline, metastable α-NiS, and nanocrystalline cobalt pentlandite. The α-NiS with a grain size of 5 nm shows probably an example of size-dependent phase stability and/or specific biomineralization precipitation paths. Detailed mineralogical characterizations are necessary to correctly assess the mineral inventory and thus metal bioavailability.  相似文献   
74.
Class IB phosphoinositide 3-kinase γ (PI3Kγ) comprises a single catalytic p110γ subunit, which binds to two non-catalytic subunits, p87 or p101, and controls a plethora of fundamental cellular responses. The non-catalytic subunits are assumed to be redundant adaptors for Gβγ enabling G-protein-coupled receptor-mediated regulation of PI3Kγ. Growing experimental data provide contradictory evidence. To elucidate the roles of the non-catalytic subunits in determining the specificity of PI3Kγ, we tested the impact of p87 and p101 in heterodimeric p87-p110γ and p101-p110γ complexes on the modulation of PI3Kγ activity in vitro and in living cells. RT-PCR, biochemical, and imaging data provide four lines of evidence: (i) specific expression patterns of p87 and p101, (ii) up-regulation of p101, providing the basis to consider p87 as a protein forming a constitutively and p101 as a protein forming an inducibly expressed PI3Kγ, (iii) differences in basal and stimulated enzymatic activities, and (iv) differences in complex stability, all indicating apparent diversity within class IB PI3Kγ. In conclusion, expression and activities of PI3Kγ are modified differently by p87 and p101 in vitro and in living cells, arguing for specific regulatory roles of the non-catalytic subunits in the differentiation of PI3Kγ signaling pathways.  相似文献   
75.
76.
Human cytomegalovirus (HCMV), a betaherpesvirus, can cause severe disease in immunosuppressed patients and following congenital infection. A vaccine that induces both humoral and cellular immunity may be required to prevent congenital infection. Dense bodies (DBs) are complex, noninfectious particles produced by HCMV-infected cells and may represent a vaccine option. As knowledge of the antigenicity and immunogenicity of DB is incomplete, we explored characterization methods and defined DB production methods, followed by systematic evaluation of neutralization and cell-mediated immune responses to the DB material in BALB/c mice. DBs purified from Towne-infected cultures treated with the viral terminase inhibitor 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) were characterized by nanoparticle tracking analysis (NTA), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), immunoblotting, quantitative enzyme-linked immunosorbent assay, and other methods. The humoral and cellular immune responses to DBs were compared to the immunogenicity of glycoprotein B (gB) administered with the adjuvant AddaVax (gB/AddaVax). DBs induced neutralizing antibodies that prevented viral infection of cultured fibroblasts and epithelial cells and robust cell-mediated immune responses to multiple viral proteins, including pp65, gB, and UL48. In contrast, gB/AddaVax failed to induce neutralizing antibodies that prevented infection of epithelial cells, highlighting a critical difference in the humoral responses induced by these vaccine candidates. Our data advance the potential for the DB vaccine approach, demonstrate important immunogenicity properties, and strongly support the further evaluation of DBs as a CMV vaccine candidate.  相似文献   
77.
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.  相似文献   
78.
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is caused by contraction of the D4Z4 repeat array on chromosome 4 to a size of 1–10 units. The residual number of D4Z4 units inversely correlates with clinical severity, but significant clinical variability exists. Each unit contains a copy of the DUX4 retrogene. Repeat contractions are associated with changes in D4Z4 chromatin structure that increase the likelihood of DUX4 expression in skeletal muscle, but only when the repeat resides in a genetic background that contains a DUX4 polyadenylation signal. Mutations in the structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) gene, encoding a chromatin modifier of D4Z4, also result in the increased likelihood of DUX4 expression in individuals with a rare form of FSHD (FSHD2). Because SMCHD1 directly binds to D4Z4 and suppresses somatic expression of DUX4, we hypothesized that SMCHD1 may act as a genetic modifier in FSHD1. We describe three unrelated individuals with FSHD1 presenting an unusual high clinical severity based on their upper-sized FSHD1 repeat array of nine units. Each of these individuals also carries a mutation in the SMCHD1 gene. Familial carriers of the FSHD1 allele without the SMCHD1 mutation were only mildly affected, suggesting a modifier effect of the SMCHD1 mutation. Knocking down SMCHD1 in FSHD1 myotubes increased DUX4 expression, lending molecular support to a modifier role for SMCHD1 in FSHD1. We conclude that FSHD1 and FSHD2 share a common pathophysiological pathway in which the FSHD2 gene can act as modifier for disease severity in families affected by FSHD1.  相似文献   
79.
80.
Ingenol mebutate is the active ingredient in Picato® a new drug for the treatment of actinic keratosis. A number of derivatives related to ingenol mebutate were prepared by chemical synthesis from ingenol with the purpose of investigating the SAR and potency in assays relating to pro-inflammatory effects (induction of PMN oxidative burst and keratinocyte cytokine release), the potential of cell death induction, as well as the chemical stability. By modifications of the ingenol scaffold several prerequisites for activity were identified. The chemical stability of the compounds could be linked to an acyl migration mechanism. We were able to find analogues of ingenol mebutate with comparable in vitro properties. Some key features for potent and more stable ingenol derivatives have been identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号