首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   34篇
  445篇
  2022年   4篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   14篇
  2014年   15篇
  2013年   28篇
  2012年   26篇
  2011年   32篇
  2010年   23篇
  2009年   21篇
  2008年   29篇
  2007年   34篇
  2006年   35篇
  2005年   31篇
  2004年   28篇
  2003年   23篇
  2002年   24篇
  2001年   1篇
  2000年   5篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1970年   1篇
排序方式: 共有445条查询结果,搜索用时 9 毫秒
71.
72.
Apolipoprotein AI (apoAI), a major component of high-density lipoproteins, is one of the major amyloid fibril proteins and a minor constituent of the senile plaques observed in Alzheimer's disease. We examined colocalization of apoAI in various kinds of systemic amyloidosis in this study. Forty-three of 48 formalin-fixed paraffin-embedded heart specimens with various forms of systemic amyloidosis reacted immunohistochemically with anti-human apoAI antibody. ApoAI was also detected in water-extracted amyloid material by immunoblotting. In addition, we observed colocalization of apoAI and murine amyloid A (AA) amyloidosis in human apoAI transgenic mice. This is the first report of colocalization of apoAI with amyloid deposits in various forms of human systemic amyloidosis and murine AA amyloidosis in human apoAI transgenic mice. ApoAI may not always be a major component of amyloid fibrils, even when it is present in systemic amyloid deposits.  相似文献   
73.
Rab27a is required for polarized secretion of lysosomes from cytotoxic T lymphocytes (CTLs) at the immunological synapse. A series of Rab27a-interacting proteins have been identified; however, only Munc13-4 has been found to be expressed in CTL. In this study, we screened for expression of the synaptotagmin-like proteins (Slps): Slp1/JFC1, Slp2-a/exophilin4, Slp3-a, Slp4/granuphilin, Slp5 and rabphilin in CTL. We found that both Slp1 and Slp2-a are expressed in CTL. Isoforms of Slp2-a in CTL showed variation of the linker region but conserved the C2A and C2B and Slp homology (SHD) domains. Both Slp1 and Slp2-a interact with Rab27a in CTL, and Slp2-a, but not Slp1, is rapidly degraded when Rab27a is absent. Slp2-a contains PEST-like sequences within its linker region, which render it susceptible to degradation. Both Slp1 and Slp2-a localize predominantly to the plasma membrane of both human and mouse CTLs, and we show that Slp2-a can focus tightly at the immunological synapse formed with a target cell. Individual knockouts of either Slp2-a or Slp1 fail to impair CTL-mediated killing of targets; however, overexpression of a dominant-negative construct consisting of the SHD of Slp2-a, which is 56% identical to that of Slp1, reduces target cell death, suggesting that both Slp1 and Slp2-a contribute to secretory lysosome exocytosis from CTL. These results suggest that both Slp1 and Slp2-a may form part of a docking complex, capturing secretory lysosomes at the immunological synapse.  相似文献   
74.
RME-8 is a DnaJ-domain-containing protein that was first identified in Caenorhabditis elegans as being required for uptake of yolk proteins. RME-8 has also been identified in other species, including flies and mammals, and the phenotypes of their RME-8 mutants suggest the importance of this protein in endocytosis. In the present study, we cloned human RME-8 (hRME-8) and characterized its biochemical properties and functions in endocytic pathways. hRME-8 was found to be a peripheral protein that was tightly associated with the membrane via its N-terminal region. It partially colocalized with several early endosomal markers, but not with late endosomal markers, consistent with observations by immunoelectron microscopy. When cells were transfected with a panel of dominant-active Rab proteins, hRME-8 was confined to large vacuoles induced by expression of Rab5aQ79L, but not by Rab7Q67L. Expression of C-terminally-truncated hRME-8 mutants led to the formation of large puncta and vacuoles, and compromised endocytic pathways through early endosomes, i.e., recycling of transferrin and degradation of epidermal growth factor. Taken together, these results indicate that hRME is primarily involved in membrane trafficking through early endosomes, but not through degradative organelles, such as multivesicular bodies and late endosomes.  相似文献   
75.
The effect of lactoperoxidase (LPO) on dextran sulfate sodium-induced colitis was examined in mice. After 9 d of colitis induction, weight loss, colon shortening, and the histological score were significantly suppressed in mice orally administered LPO (62.5 mg/body/d) as compared to a group administered bovine serum albumin. These results suggest that LPO exhibits anti-inflammatory effects in the gastrointestinal tract.  相似文献   
76.
77.
Oral administration of bovine lactoferrin (bLF) inhibits carcinogenesis in the colon and other organs in rats, and lung metastasis in mice. A likely mechanism by which bLF mediates its anticarcinogenesis effects is by enhanced expression of cytokines and subsequent activation of immune cells. Oral administration of bLF enhances expression of interleukin-18 (IL-18) mRNA in the mucosa of the small intestine of mice. Importantly, the pepsin hydrolysate of bLF (bLFH) also induced expression of IL-18 mRNA in the mouse small intestine and a peptide produced by pepsin digestion of bLF, bovine lactoferricin (bLFcin), induced expression of mature IL-18 in organ culture. In addition to IL-18, bLF and bLFcin both induced significant increases in caspase-1 activity in peritoneal macrophages and in organ cultures. The increase of mature IL-18 by macrophages was inhibited by caspase-1 inhibitor: caspase-1 is known to cleave the proform of IL-18 to produce active mature IL-18. Finally, bLF also induced expression of IFNgamma by peritoneal macrophages. Importantly, in IFNgamma knockout (GKO) mice, bLF administration resulted in increased expression of caspase-1 protein, but induction of IL-18 mRNA, caspase-1 activity, and mature IL-18 was not observed. These results indicate that orally administered bLF can induce expression of IFNgamma and caspase-1 in the small intestine. IFNgamma in turn increases expression of target genes, including IL-18. Active caspase-1 then cleaves pro-IL-18 to generate mature IL-18. Thus, bLF activates an effector pathway mediated by IFNgamma, caspase-1, and IL-18. We also show that ingested bLF is able to activate more than a single effector pathway. For example, in GKO mice while bLF administration could not activate the IFNgamma/caspase-1/IL-18 effector pathway, it was able to inhibit tumor growth and metastasis by activation of an IFNalpha/IL-7 effector pathway.  相似文献   
78.
Interaction of light and hormone signals in germinating seeds   总被引:1,自引:0,他引:1  
Seed germination is regulated by several environmental factors, such as moisture, oxygen, temperature, light, and nutrients. Light is a critical regulator of seed germination in small-seeded plants, including Arabidopsis and lettuce. Phytochromes, a class of photoreceptors, play a major role in perceiving light to induce seed germination. Classical physiological studies have long suggested the involvement of gibberellin (GA) and abscisic acid (ABA) in the phytochrome-mediated germination response. Recent studies have demonstrated that phytochromes modulate endogenous levels of GA and ABA, as well as GA responsiveness. Several key components that link the perception of light and the modulation of hormone levels and responsiveness have been identified. Complex regulatory loops between light, GA and ABA signaling pathways have been uncovered.  相似文献   
79.
We have developed a free‐energy function based on an all‐atom model for proteins. It comprises two components, the hydration entropy (HE) and the total dehydration penalty (TDP). Upon a transition to a more compact structure, the number of accessible configurations arising from the translational displacement of water molecules in the system increases, leading to a water‐entropy gain. To fully account for this effect, the HE is calculated using a statistical‐mechanical theory applied to a molecular model for water. The TDP corresponds to the sum of the hydration energy and the protein intramolecular energy when a fully extended structure, which possesses the maximum number of hydrogen bonds with water molecules and no intramolecular hydrogen bonds, is chosen as the standard one. When a donor and an acceptor (e.g., N and O, respectively) are buried in the interior after the break of hydrogen bonds with water molecules, if they form an intramolecular hydrogen bond, no penalty is imposed. When a donor or an acceptor is buried with no intramolecular hydrogen bond formed, an energetic penalty is imposed. We examine all the donors and acceptors for backbone‐backbone, backbone‐side chain, and side chain‐side chain intramolecular hydrogen bonds and calculate the TDP. Our free‐energy function has been tested for three different decoy sets. It is better than any other physics‐based or knowledge‐based potential function in terms of the accuracy in discriminating the native fold from misfolded decoys and the achievement of high Z‐scores. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
80.
In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H+-PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H+-ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5–1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl–2, mls–2, pck1–2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号