首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   54篇
  2023年   3篇
  2022年   5篇
  2021年   17篇
  2020年   9篇
  2019年   9篇
  2018年   19篇
  2017年   14篇
  2016年   26篇
  2015年   44篇
  2014年   59篇
  2013年   73篇
  2012年   67篇
  2011年   71篇
  2010年   48篇
  2009年   28篇
  2008年   50篇
  2007年   43篇
  2006年   32篇
  2005年   20篇
  2004年   28篇
  2003年   24篇
  2002年   20篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   9篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有782条查询结果,搜索用时 62 毫秒
61.
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/−;Emx2+/− mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/−;Emx2+/− embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans.  相似文献   
62.
63.
We have used confocal microscopy and an antibody against Anopheles gambiae beta integrin to study this protein's distribution in the mosquito midgut and its relationship to invading Plasmodium berghei parasites. An extensive reorganization of integrin is seen to take place in the midgut epithelial cells following the uptake of either non-infected or parasite-infected blood meal, probably reflecting the reshaping of the gut due to the presence of the food bolus and the peritrophic membrane that surrounds it. Furthermore, malaria parasites are coated with beta integrin immediately upon entry into the epithelium, independent of whether they develop intra- or extracellularly. Although this coat is shed a few days after the invasion, beta integrin remains concentrated in the cells surrounding the maturing oocyst for several days. Finally, the antibody detects a structural change in the midgut epithelial cells in the immediate vicinity of the invading ookinete, which is consistent with Plasmodium-induced apoptosis followed by wound healing. This intimate association suggests a specific role of beta integrin in the invasion process.  相似文献   
64.
65.
Using a proteomic approach we identified polypeptides from Anopheles gambiae and Drosophila melanogaster protein extracts that selectively bind purified Plasmodium berghei ookinetes in vitro; these were two and three distinct polypeptides, respectively, with an apparent molecular weight of about 36 kDa. Combining two-dimensional electrophoresis and MALDI-TOF (matrix-associated laser desorption ionization time of flight) mass spectrometry we determined that the polypeptides correspond to isomorphs of the annexin B11 protein of the fruit fly. When protein extracts derived from A. gambiae and D. melanogaster tissue culture cells were further fractionated, the binding activity matching the annexin protein could be localized in the fraction derived from cell membranes in both diptera. Antibody staining showed that annexin also binds to ookinetes during the invasion of the mosquito midgut. Finally, inclusion of antiannexin antisera in a mosquito blood meal impaired parasite development, suggesting a facilitating role for annexins in the infection of the mosquito by Plasmodium.  相似文献   
66.
Specific inhibitors of glucosylceramide biosynthesis are used as drugs for the treatment of some human diseases correlated to glycosphingolipid metabolism. The target of the presently available inhibitors is the human glucosylceramide synthase (GCS), but effects on enzymes from other organisms have not been studied. We expressed cDNAs encoding GCS enzymes from lower animals, plants, fungi, and bacteria in the yeast P. pastoris. In vitro GCS assays with the GCS inhibitor D-threo-1-(3',4'-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol showed that this inhibitor did not affect non-human GCS enzymes.  相似文献   
67.

Background  

Leishmania parasites undergo profound morphological and biochemical changes while passing through their life cycle. Protein kinases have been shown to be involved in the differentiation from the extracellular flagellated promastigotes to the intracellular "non-flagellated" amastigotes and vice versa. Moreover, these enzymes are likely involved in the regulation of the proliferation of the different life stages.  相似文献   
68.
S-nitrosoglutathione (GSNO) denitrosation activity of recombinant human protein disulfide isomerase (PDI) has been kinetically characterized by monitoring the loss of the S-NO absorbance, using a NO electrode, and with the aid of the fluorogenic NOx probe 2,3-diaminonaphthalene. The initial rates of denitrosation as a function of [GSNO] displayed hyperbolic behavior irrespective of the method used to monitor denitrosation. The Km values estimated for GSNO were 65 +/- 5 microm and 40 +/- 10 microm for the loss in the S-NO bond and NO production (NO electrode or 2,3-diaminonaphthalene), respectively. Hemoglobin assay provided additional evidence that the final product of PDI-dependent GSNO denitrosation was NO*. A catalytic mechanism, involving a nitroxyl disulfide intermediate stabilized by imidazole (His160 a-domain or His589 a'-domain), which after undergoing a one-electron oxidation decomposes to yield NO plus dithiyl radical, has been proposed. Evidence for the formation of thiyl/dithiyl radicals during PDI-catalyzed denitrosation was obtained with 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl. Evidence has also been obtained showing that in a NO- and O2-rich environment, PDI can form N2O3 in its hydrophobic domains. This "NO-charged PDI" can perform intra- and intermolecular S-nitrosation reactions similar to that proposed for serum albumin. Interestingly, reduced PDI was able to denitrosate S-nitrosated PDI (PDI-SNO) resulting in the release of NO. PDI-SNO, once formed, is stable at room temperature in the absence of reducing agent over the period of 2 h. It has been established that PDI is continuously secreted from cells that are net producers of NO-like endothelial cells. The present demonstration that PDI can be S-nitrosated and that PDI-SNO can be denitrosated by PDI suggests that this enzyme could be intimately involved in the transport of intracellular NO equivalents to the cell surface as well as the previous demonstration of PDI in the transfer of S-nitrosothiol-bound NO to the cytosol.  相似文献   
69.
Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic beta-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length alpha-helical conformation between residues F(6) and A(28). This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists.  相似文献   
70.
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIalpha and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150-200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200-300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial "glue."  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号