全文获取类型
收费全文 | 4916篇 |
免费 | 433篇 |
专业分类
5349篇 |
出版年
2023年 | 52篇 |
2022年 | 81篇 |
2021年 | 206篇 |
2020年 | 86篇 |
2019年 | 123篇 |
2018年 | 142篇 |
2017年 | 128篇 |
2016年 | 204篇 |
2015年 | 357篇 |
2014年 | 377篇 |
2013年 | 402篇 |
2012年 | 517篇 |
2011年 | 484篇 |
2010年 | 270篇 |
2009年 | 197篇 |
2008年 | 275篇 |
2007年 | 255篇 |
2006年 | 198篇 |
2005年 | 184篇 |
2004年 | 134篇 |
2003年 | 157篇 |
2002年 | 130篇 |
2001年 | 25篇 |
2000年 | 30篇 |
1999年 | 27篇 |
1998年 | 20篇 |
1997年 | 18篇 |
1996年 | 13篇 |
1995年 | 9篇 |
1994年 | 15篇 |
1993年 | 13篇 |
1992年 | 15篇 |
1991年 | 10篇 |
1990年 | 19篇 |
1989年 | 10篇 |
1988年 | 8篇 |
1987年 | 8篇 |
1986年 | 10篇 |
1984年 | 7篇 |
1983年 | 5篇 |
1982年 | 6篇 |
1979年 | 6篇 |
1978年 | 15篇 |
1976年 | 11篇 |
1974年 | 5篇 |
1973年 | 9篇 |
1972年 | 10篇 |
1969年 | 6篇 |
1968年 | 5篇 |
1966年 | 6篇 |
排序方式: 共有5349条查询结果,搜索用时 15 毫秒
51.
52.
Sebastian Weber Sebastian Schaepe Stephan Freyer Michael‐Helmut Kopf Christian Dietzsch 《Engineering in Life Science》2019,19(3):159-167
Jet aerated loop reactors (JLRs) provide high mass transfer coefficients (kLa) and can be used for the intensification of mass transfer limited reactions. The jet loop reactor achieves higher kLa values than a stirred tank reactor (STR). The improvement relies on significantly higher local power inputs (~104) than those obtainable with the STR. Operation at high local turnover rates requires efficient macromixing, otherwise reactor inhomogeneities might occur. If sufficient homogenization is not achieved, the selectivity of the reaction and the respective yields are decreased. Therefore, the balance between mixing and mass transfer in jet loop reactors is a critical design aspect. Monitoring the dissolved oxygen levels during the turnover of a steady sodium sulfite feed implied the abundance of gradients in the JLR. Prolonged mixing times at identical power input and aeration rates (~100%) were identified for the JLR in comparison to the STR. The insertion of a draft tube to the JLR led to a more homogenous dissolved oxygen distribution, but unfortunately a reduction of mixing time was not achieved. In case of increased medium viscosities as they may arise in high cell density cultivations, no gradient formation was detected. However, differences in medium viscosity significantly altered the mass transfer and mixing performance of the JLR. 相似文献
53.
Impact of nozzle operation on mass transfer in jet aerated loop reactors. Characterization and comparison to an aerated stirred tank reactor 下载免费PDF全文
Sebastian Weber Sebastian Schaepe Stephan Freyer Michael‐Helmut Kopf Christian Dietzsch 《Engineering in Life Science》2018,18(8):579-588
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines. 相似文献
54.
Wojciech Giera Sebastian Szewczyk Michael D. McConnell Kevin E. Redding Rienk van Grondelle Krzysztof Gibasiewicz 《Photosynthesis research》2018,137(2):321-335
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI–LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI–LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI–LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI–LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~?12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~?675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls. 相似文献
55.
Julia Schollmeyer Saskia Waldburger Kendra Njo Heba Yehia Anke Kurreck Peter Neubauer Sebastian L. Riedel 《Biotechnology and bioengineering》2023,120(11):3322-3334
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5′-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1–90.1 g L−1 were observed together with an overproduction of ApMTAP in a 1.9%–3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg−1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli. 相似文献
56.
Aghdam SY Eming SA Willenborg S Neuhaus B Niessen CM Partridge L Krieg T Bruning JC 《Biochemical and biophysical research communications》2012,421(2):197-202
Type 2 diabetes mellitus affects 6% of western populations and represents a major risk factor for the development of skin complications, of which impaired wound healing, manifested in e.g. "diabetic foot ulcer", is most prominent. Impaired angiogenesis is considered a major contributing factor to these non-healing wounds. At present it is still unclear whether diabetes-associated wound healing and skin vascular dysfunction are direct consequences of impaired insulin/IGF-1 signaling, or secondary due to e.g. hyperglycemia. To directly test the role of vascular endothelial insulin signaling in the development of diabetes-associated skin complications and vascular function, we inactivated the insulin receptor and its highly related receptor, the IGF-1 receptor, specifically in the endothelial compartment of postnatal mice, using the inducible Tie-2CreERT (DKO(IVE)) deleter. Impaired endothelial insulin/IGF-1 signaling did not have a significant impact on endothelial homeostasis in the skin, as judged by number of vessels, vessel basement membrane staining intensity and barrier function. In contrast, challenging the skin through wounding strongly reduced neo-angiogenesis in DKO(IVE) mice, accompanied by reduced granulation tissue formation reduced. These results show that endothelial insulin/IGF signaling is essential for neo-angiogenesis upon wounding, and imply that reduced endothelial insulin/IGF signaling directly contributes to diabetes-associated impaired healing. 相似文献
57.
58.
ABSTRACT: Macroautophagy (commonly abbreviated as autophagy) is an evolutionary conserved lysosome-directed vesicular trafficking pathway in eukaryotic cells that mediates the lysosomal degradation of intracellular components. The cytoplasmic cargo is initially enclosed by a specific double membrane vesicle, termed the autophagosome. By this means, autophagy either helps to remove damaged organelles, long-lived proteins and protein aggregates, or serves as a recycling mechanism for molecular building blocks. Autophagy was once invented by unicellular organisms to compensate the fluctuating external supply of nutrients. In higher eukaryotes, it is strongly enhanced under various stress conditions, such as nutrient and growth factor deprivation or DNA damage. The serine/threonine kinase Atg1 was the first identified autophagy-related gene (ATG) product in yeast. The corresponding nematode homolog UNC-51, however, has additional neuronal functions. Vertebrate genomes finally encode five closely related kinases, of which UNC-51-like kinase 1 (Ulk1) and Ulk2 are both involved in the regulation of autophagy and further neuron-specific vesicular trafficking processes. This review will mainly focus on the vertebrate Ulk1/2-Atg13-FIP200 protein complex, its function in autophagy initiation, its evolutionary descent from the yeast Atg1-Atg13-Atg17 complex, as well as the additional non-autophagic functions of its components. Since the rapid nutrient- and stress-dependent cellular responses are mainly mediated by serine/threonine phosphorylation, it will summarize our current knowledge about the relevant upstream signaling pathways and the altering phosphorylation status within this complex during autophagy induction. 相似文献
59.
Sebastian Hückesfeld Andreas Schoofs Philipp Schlegel Anton Miroschnikow Michael J. Pankratz 《PloS one》2015,10(8)
Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system. 相似文献
60.
The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1–13Hz, 13–30Hz, 30–60Hz, and 60–100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses. 相似文献