首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   62篇
  380篇
  2022年   4篇
  2021年   10篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   6篇
  2015年   14篇
  2014年   8篇
  2013年   15篇
  2012年   20篇
  2011年   14篇
  2010年   13篇
  2009年   12篇
  2008年   13篇
  2007年   27篇
  2006年   14篇
  2005年   14篇
  2004年   17篇
  2003年   11篇
  2002年   9篇
  2001年   17篇
  2000年   21篇
  1999年   14篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1969年   1篇
  1958年   2篇
  1957年   1篇
  1952年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
61.
62.
Glia: the fulcrum of brain diseases   总被引:4,自引:0,他引:4  
Neuroglia represented by astrocytes, oligodendrocytes and microglial cells provide for numerous vital functions. Glial cells shape the micro-architecture of the brain matter; they are involved in information transfer by virtue of numerous plasmalemmal receptors and channels; they receive synaptic inputs; they are able to release 'glio'transmitters and produce long-range information exchange; finally they act as pluripotent neural precursors and some of them can even act as stem cells, which provide for adult neurogenesis. Recent advances in gliology emphasised the role of glia in the progression and handling of the insults to the nervous system. The brain pathology, is, to a very great extent, a pathology of glia, which, when falling to function properly, determines the degree of neuronal death, the outcome and the scale of neurological deficit. Glial cells are central in providing for brain homeostasis. As a result glia appears as a brain warden, and as such it is intrinsically endowed with two opposite features: it protects the nervous tissue as long as it can, but it also can rapidly assume the guise of a natural killer, trying to eliminate and seal the damaged area, to save the whole at the expense of the part.  相似文献   
63.
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.Desiccation tolerance, the ability to survive absolute water contents down to approximately 0.1 g water g−1 dry weight, is a trait found in some bacteria, algae, fungi, as well as animals and plants. In the plant kingdom, desiccation tolerance is common in ferns, mosses, and most seeds and pollen of flowering plants (angiosperms). Resurrection plants, a diverse group of approximately 300 angiosperm species, possess this trait also in their vegetative tissues. These plants are able to withstand prolonged periods of dehydration and to recover within hours to a few days once water is available. A major and interesting aspect in the study of desiccation tolerance in resurrection plants is how they protect themselves against oxidative damage during dehydration, which is often accompanied by conditions of high irradiance (for review, see Bartels and Hussain, 2011; Farrant and Moore, 2011; Morse et al., 2011).A decrease in water content quickly results in lowered leaf stomatal conductance and, consequently, decreased uptake of CO2. This hinders and ultimately blocks the Calvin cycle. The light-driven reactions, however, typically continue well after the onset of water deficiency, with intact chlorophyll-protein complexes absorbing light energy. The imbalance between the light reactions and the downward biochemical pathways results in a lack of electron sinks and in the system becoming overenergized. This, in turn, leads to enhanced generation of reactive oxygen species (ROS), which inflict damage onto photosynthetic components as well as onto other chloroplast and cellular constituents. At times, the damage may be severe and lead to irreversible impairment and finally plant death (Dinakar et al., 2012).Resurrection plants minimize such potential ROS damage by shutting down photosynthesis during early stages of dehydration (Farrant, 2000; Farrant et al., 2007). There are two mechanisms whereby this is achieved. In poikilochlorophyllous resurrection plants, chlorophyll, along with photosynthetic protein complexes, are degraded, and thylakoids, the membranes that host the photosynthetic pigment-protein complexes, are dismantled. This straightforward mechanism prevents the formation of ROS, yet it comes at the cost of resynthesizing photosynthetic components de novo upon rehydration. On the other hand, homoiochlorophyllous species retain most of their photosynthetic complement and so must rely on other means to protect themselves from oxidative damage in the desiccated state. Some of these, such as leaf folding or curling, which minimize the exposure of inner leaves and/or of adaxial (upper) leaf surfaces to the light, and the accumulation of anthocyanins in leaf surfaces, which act as sunscreens, and the presence of reflective hairs and waxy cuticles, reduce the overall absorption of radiation and thus protect against photodamage (Sherwin and Farrant, 1998; Farrant, 2000; Bartels and Hussain, 2011; Morse et al., 2011). ROS that are generated are dealt with by antioxidants, ROS scavengers, and in some cases also by anthocyanins and other polyphenols (Moore et al., 2005; Kytridis and Manetas, 2006; Farrant et al., 2007). Nevertheless, all of these mechanisms are insufficient to completely prevent and/or detoxify all ROS that are formed, necessitating additional means to prevent or deal with possible damage that ROS may inflict during dehydration and while desiccated (Dinakar et al., 2012).The major photoprotective mechanism in plants and algae is nonphotochemical quenching (NPQ), in which excess light energy absorbed at the antennae of PSII is dissipated as heat. NPQ has been shown to be active in desiccation-tolerant bryophytes and pteridiophytes (Eickmeier et al., 1993; Oliver, 1996), in homoiochlorophyllous angiosperms (Alamillo and Bartels, 2001; Georgieva et al., 2009; Dinakar and Bartels, 2012; Huang et al., 2012), and during the initial stages of drying in poikilochlorophyllous angiosperms (Beckett et al., 2012). Photoinhibition, when damage to PSII (mainly to its D1 subunit) exceeds the repair capacity, typically under conditions of light stress, is also observed in homoiochlorophyllous resurrection plants (e.g. Georgieva and Maslenkova, 2006). Other ways to avoid ROS-induced damage include the rerouting of reducing equivalents to alternative electron sinks, such as the water-water cycle and/or photorespiration, as well as structural rearrangements of PSII and light-harvesting antenna (LHCII) complexes into energy-dissipating states (for review, see Dekker and Boekema, 2005; Yamamoto et al., 2014). These latter processes, in particular the ones pertaining to possible changes in PSII-LHCII macrostructure, have not yet been characterized in homoiochlorophyllous resurrection plants.To gain insight into the ways homoiochlorophyllous resurrection plants cope with dehydration while retaining most of their photosynthetic apparatus, we combined microscopic, spectroscopic, and biochemical approaches. Investigation of the supramolecular organization of photosynthetic complexes was carried out using cryoscanning electron microscopy (cryo-SEM) of high-pressure frozen, freeze-fractured leaf samples; to our knowledge, this combination of procedures has not been utilized previously to investigate thylakoid membranes within plant tissues.The studies reveal that during dehydration, the density of PSII in grana membranes gradually decreases. Notably, in the dehydrated state, in which photosynthetic activity is halted, PSII complexes are also observed to be arranged into rows and two-dimensional arrays. These arrangements are proposed to represent quenched PSII complexes that likely minimize the generation of ROS during desiccation. Furthermore, we observe inverted hexagonal (HII) phases in this dry state, and these two structural rearrangements are correlated with the massive accumulation of Suc. Biochemical studies of thylakoid membrane fractions support the finding that the relative level of PSII proteins decreases during dehydration. These analyses also reveal that the level of the cytochrome f subunit of the cytochrome b6f complex decreases quite dramatically and early during dehydration. This provides evidence for an additional level of regulation that inhibits/shuts down the photosynthetic light reactions during desiccation.  相似文献   
64.
The gastric H+,K+-ATPase of the parietal cell is responsible for acid secretion in the stomach and is the main target in the pharmacological treatment of acid-related diseases. Omeprazole and other benzimidazole drugs, although having delayed efficacy if taken orally, have high success rates in the treatment of peptic ulcer disease. Potassium competitive acid blockers (P-CAB) compete with K+ for binding to the H+,K+-ATPase and thereby they inhibit acid secretion. In this study, the in vitro properties of AZD0865, a reversible H+,K+-ATPase inhibitor of gastric acid secretion, are described. We used a digital-imaging system and the pH sensitive dye BCECF to observe proton efflux from hand-dissected rat gastric glands. Glands were stimulated with histamine (100 microM) and exposed to a bicarbonate- and Na+-free perfusate to induce an acid load. H+,K+-ATPase inhibition was determined by calculating pHi recovery (dpH/dT) in the presence of omeprazole (10-200 microM) or AZD0865 (0.01-100 microM). The efficacies of both drugs were compared. Our data show that acid secretion is inhibited by both the proton pump inhibitor omeprazole and the P-CAB AZD0865. Complete inhibition of acid secretion by AZD0865 had a rapid onset of activation, was reversible, and occurred at a 100-fold lower dose than omeprazole (1 microM AZD0865 vs. 100 microM omeprazole). This study demonstrates that AZD0865 is a potent, fast-acting inhibitor of gastric acid secretion, effective at lower concentrations than drugs of the benzimidazole class. Therefore, these data strongly suggest that AZD0865 has great potential as a fast-acting, low-dose inhibitor of acid secretion.  相似文献   
65.
It is well established that the Nef proteins of human and simian immunodeficiency viruses (HIV and SIV) modulate major histocompatibility complex class I (MHC-I) cell surface expression to protect infected cells against lysis by cytotoxic T lymphocytes (CTLs). Recent data supported the observation that Nef also manipulates CTLs directly by down-modulating CD8αβ (J. A. Leonard, T. Filzen, C. C. Carter, M. Schaefer, and K. L. Collins, J. Virol. 85:6867-6881, 2011), but it remained unknown whether this Nef activity is conserved between different lineages of HIV and SIV. In this study, we examined a total of 42 nef alleles from 16 different primate lentiviruses representing most major lineages of primate lentiviruses, as well as nonpandemic HIV-1 strains and the direct precursors of HIV-1 (SIVcpz and SIVgor). We found that the vast majority of these nef alleles strongly down-modulate CD8β in human T cells. Primate lentiviral Nefs generally interacted specifically with the cytoplasmic tail of CD8β, and down-modulation of this receptor was dependent on the conserved dileucine-based motif and two adjacent acidic residues (DD/E) in the C-terminal flexible loop of SIV Nef proteins. Both of these motifs are known to be important for the interaction of HIV-1 Nef with AP-2, and they were also shown to be critical for down-modulation of CD4 and CD28, but not MHC-I, by SIV Nefs. Our results show that down-modulation of CD4, CD8β, and CD28 involves largely overlapping (but not identical) domains and is most likely dependent on conserved interactions of primate lentiviral Nefs with cellular adaptor proteins. Furthermore, our data demonstrate that Nef-mediated down-modulation of CD8αβ is a fundamental property of primate lentiviruses and suggest that direct manipulation of CD8+ T cells plays a relevant role in viral immune evasion.  相似文献   
66.
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens.  相似文献   
67.
Kirchhoff F 《Cell》2008,134(4):566-568
RNA interference holds great promise for antiviral therapy, but delivering effective quantities of small interfering RNAs (siRNAs) into the right target cells in vivo represents a major challenge. Kumar et al. (2008) now report a technique to target siRNAs specifically to T cells to suppress viral infection in a humanized mouse model of HIV/AIDS.  相似文献   
68.
69.
A DNA probe containing GATA tandem repeats detected numerous dispersed minisatellite regions in the genomes of the blowflies Chrysomya rufifacies and Calliphora erythrocephala. These regions seemed to be actively transcribed into poly(A)+ RNA in a tissue-specific manner. When genomic DNA of blastoderm embryos was compared with adult genomic DNA some loci hybridizing to GATA displayed a marked stage-specific variation in length. In Calliphora, a small sex-linked dimorphism of GATA minisatellite associated restriction fragments was observed.  相似文献   
70.
The continuous cultivation of mycoplasmas in a pH-controlled metabolistat was investigated with the fermentative strain Mycoplasma mobile 163K and the nonfermentative strain Mycoplasma arthritidis ISR1. The addition of medium and the removal of culture suspension were regulated by acid production from glucose by M. mobile 163K and by ammonium production from arginine by M. arthritidis ISR1, respectively. For both strains the optimal pH for continuous growth was 7.0. The steady state could be maintained for at least 21 days. With CFU of 8.4 X 10(9) ml-1 (M. mobile 163K) and 3.2 X 10(9) ml-1 (M. arthritidis ISR1), the cell concentrations were slightly higher than those obtained in batch cultures. The dependence on the adjusted pH values was measured for several parameters, such as flow rate, CFU, glucose fermentation or production of ammonia, and gliding velocity. Since the long lag phases of batch cultures can be avoided, pH-controlled continuous cultures provide an appropriate system for the production of mycoplasma cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号