首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   92篇
  国内免费   1篇
  1120篇
  2022年   8篇
  2021年   15篇
  2020年   7篇
  2019年   7篇
  2018年   15篇
  2017年   9篇
  2016年   16篇
  2015年   27篇
  2014年   30篇
  2013年   48篇
  2012年   59篇
  2011年   47篇
  2010年   34篇
  2009年   31篇
  2008年   60篇
  2007年   47篇
  2006年   52篇
  2005年   37篇
  2004年   42篇
  2003年   48篇
  2002年   39篇
  2001年   34篇
  2000年   25篇
  1999年   21篇
  1998年   22篇
  1997年   12篇
  1996年   13篇
  1995年   16篇
  1994年   18篇
  1993年   12篇
  1992年   18篇
  1991年   11篇
  1990年   15篇
  1989年   21篇
  1988年   16篇
  1987年   17篇
  1986年   13篇
  1985年   12篇
  1984年   9篇
  1983年   14篇
  1982年   8篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1975年   8篇
  1974年   9篇
  1970年   6篇
  1967年   5篇
  1966年   7篇
  1965年   6篇
排序方式: 共有1120条查询结果,搜索用时 0 毫秒
991.
Female fetal cells in maternal blood: use of DNA polymorphisms to prove origin   总被引:11,自引:0,他引:11  
The nucleated erythrocyte (NRBC) is one of the target fetal cell types for noninvasive genetic diagnosis using maternal peripheral blood. However, it is now known that pregnancy can stimulate the production of maternal NRBCs. When isolating female gamma-positive NRBCs, fluorescence in situ hybridization (FISH) analysis may show two X chromosome signals per nucleus, and therefore it cannot be conclusively determined whether the isolated cells are fetal or maternal in origin. The purpose of this study was to develop a means of verifying that a female cell is fetal on the basis of polymorphic short tandem repeat markers. Peripheral blood samples were obtained from women who had just undergone termination of pregnancy. Nucleated candidate fetal cells were isolated by flow-sorting using antibody to the gamma-chain of fetal hemoglobin and Hoechst 33342. FISH analysis was performed using X and Y chromosome specific probes. Female gamma-positive cells and leukocytes were micromanipulated separately and subjected to fluorescent polymerase chain reaction amplification of chromosome 21 and/or 18 STR markers (D21S11, D21S1411, D21S1412, and D18S535). In all ten cases analyzed, the gamma-positive female candidate fetal cells were determined to be fetal in origin by the presence of shared and nonshared DNA polymorphisms when compared with maternal leukocytes. These results show that genetic analysis can be performed on all fetal NRBCs, including female fetal cells that cannot be distinguished from maternal cells based on FISH analysis alone.  相似文献   
992.

Background

Random monoallelic expression defines an unusual class of genes displaying random choice for expression between the maternal and paternal alleles. Once established, the allele-specific expression pattern is stably maintained and mitotically inherited. Examples of random monoallelic genes include those found on the X-chromosome and a subset of autosomal genes, which have been most extensively studied in humans. Here, we report a genome-wide analysis of random monoallelic expression in the mouse. We used high density mouse genome polymorphism mapping arrays to assess allele-specific expression in clonal cell lines derived from heterozygous mouse strains.

Results

Over 1,300 autosomal genes were assessed for allele-specific expression, and greater than 10% of them showed random monoallelic expression. When comparing mouse and human, the number of autosomal orthologs demonstrating random monoallelic expression in both organisms was greater than would be expected by chance. Random monoallelic expression on the mouse autosomes is broadly similar to that in human cells: it is widespread throughout the genome, lacks chromosome-wide coordination, and varies between cell types. However, for some mouse genes, there appears to be skewing, in some ways resembling skewed X-inactivation, wherein one allele is more frequently active.

Conclusions

These data suggest that autosomal random monoallelic expression was present at least as far back as the last common ancestor of rodents and primates. Random monoallelic expression can lead to phenotypic variation beyond the phenotypic variation dictated by genotypic variation. Thus, it is important to take into account random monoallelic expression when examining genotype-phenotype correlation.  相似文献   
993.
ABSTRACT: Co-evolving positions within protein sequences have been used as spatial constraints to develop a computational approach for modeling membrane protein structures.  相似文献   
994.
Although human induced pluripotent stem cells (hiPSCs) have enormous potential in regenerative medicine, their epigenetic variability suggests that some lines may not be suitable for human therapy. There are currently few benchmarks for assessing quality. Here we show that X-inactivation markers can be used to separate hiPSC lines into distinct epigenetic classes and that the classes are phenotypically distinct. Loss of XIST expression is strongly correlated with upregulation of X-linked oncogenes, accelerated growth rate in?vitro, and poorer differentiation in?vivo. Whereas differences in X-inactivation potential result in epigenetic variability of female hiPSC lines, male hiPSC lines generally resemble each other and do not overexpress the oncogenes. Neither physiological oxygen levels nor HDAC inhibitors offer advantages to culturing female hiPSC lines. We conclude that female hiPSCs may be epigenetically less stable in culture and caution that loss of?XIST may result in qualitatively less desirable stem cell lines.  相似文献   
995.
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and?a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.  相似文献   
996.
997.
Higher-order inputs provide important regulatory control to motor circuits, but few cellular-level studies of such inputs have been performed. To begin studying higher-order neurons in an accessible model system, we have localized, in the supraesophageal ganglion (brain), neurons that are candidates for influencing the well-characterized motor circuits in the stomatogastric nervous system (STNS) of the crab Cancer borealis. The STNS is an extension of the central nervous system and includes four ganglia, within which are a set of motor circuits that regulate the ingestion and processing of food. These motor circuits are locally regulated by a set of modulatory neurons, most of which are located in the paired commissural ganglia (CoGs). These modulatory neurons are well-positioned to receive input from brain neurons because the circumesophageal commissures (CoCs) connect the brain with the CoGs. We have performed a series of CoC backfills to localize the brain neurons that are likely to innervate the CoGs and are, therefore, candidates for influencinng the STNS motor patterns. CoC backfill-labeled neuronal somata within the brain are clustered around a subset of anatomically defined neuropil regions. We have concomitantly localized many CoG neurons that project into the brain. This latter pathway presumably includes neurons that provide feedback regarding ongoing STNS activity. Interestingly, nearly all of these brain and CoG neurons project through the medial aspect of the CoC. This work provides an initial framework for future studies to determine the way that higher-order input regulates rhythmic motor patterns. This work was supported by a grant from the National Institute of Neurological Disorders and Strokes (NS42813 to M.P.N.) and a National Science Foundation Fellowship (DGE9616278 to M.S.K.).  相似文献   
998.
Although endothelin-1 (ET-1) induces vasoconstriction, it remains unknown whether 17beta-estradiol (E(2)) treatment following trauma-hemorrhage alters these ET-1-induced vasoconstrictive effects. In addition, the role of the specific estrogen receptor (ER) subtypes (ER-alpha and ER-beta) and the endothelium-localized downstream mechanisms of actions of E(2) remain unclear. We hypothesized that E(2) attenuates increased ET-1-induced vasoconstriction following trauma-hemorrhage via an ER-beta-mediated pathway. To study this, aortic rings were isolated from male Sprague-Dawley rats following trauma-hemorrhage with or without E(2) treatment, and alterations in tension were determined in vitro. Dose-response curves to ET-1 were determined, and the vasoactive properties of E(2), propylpyrazole triol (PPT, ER-alpha agonist), and diarylpropionitrile (DPN, ER-beta agonist) were determined. The results showed that trauma-hemorrhage significantly increased ET-1-induced vasoconstriction; however, administration of E(2) normalized ET-1-induced vasoconstriction in trauma-hemorrhage vessels to the sham-operated control level. The ER-beta agonist DPN counteracted ET-1-induced vasoconstriction, whereas the ER-alpha agonist PPT was ineffective. Moreover, the vasorelaxing effects of E(2) were not observed in endothelium-denuded aortic rings or by pretreatment of the rings with a nitric oxide (NO) synthase inhibitor. Cyclooxygenase inhibition with indomethacin had no effect on the action of E(2). Thus, E(2) administration attenuates ET-1-induced vasoconstriction following trauma-hemorrhage via an ER-beta-mediated pathway that is dependent on endothelium-derived NO synthesis.  相似文献   
999.
Retroviral and transgenic lineage-tracing studies have shown that neural crest cells associate with the developing bundles of the ventricular conduction system. Whereas this migration of cells does not provide progenitors for the myocardial cells of the conduction system, the question of whether neural crest affects the differentiation and/or function of cardiac specialized tissues continues to be of interest. Using optical mapping of voltage-sensitive dye, we determined that ventricles from chick embryos in which the cardiac neural crest had been laser ablated did not progress to apex-to-base activation by the expected stage [i.e., Hamburger and Hamilton (HH) 35] but instead maintained basal breakthroughs of epicardial activation consistent with immature function of the conduction system. In direct studies of activation, waves of depolarization originating from the His bundle were found to be uncommon in control hearts from HH34 and HH35 embryos. However, activations propagating from septal base, at or near the His bundle, occurred frequently in hearts from HH34 and HH35 neural crest-ablated embryos. Consistent with His bundle cells maintaining electrical connections with adjacent working myocytes, histological analyses of hearts from neural crest-ablated embryos revealed His bundles that had not differentiated a lamellar organization or undergone a process of compaction and separation from surrounding myocardium observed in controls. Furthermore, measurements on histological sections from optically mapped hearts indicated that, whereas His bundle diameter in control embryos thinned by almost one-half between HH30 and HH34, the His bundle in ablated embryos underwent no such compaction in diameter, maintaining a thickness at HH30, HH32, and HH34 similar to that observed in HH30 controls. We conclude that the cardiac neural crest is required in a novel function involving lamellar compaction and electrical isolation of the basally located His bundle from surrounding myocardium.  相似文献   
1000.
Serial ultrasound examination of four mature female sevengill sharks (Notorynchus cepedianus) was carried out over 18 months. Monitoring the reproductive cycle and development of follicles and fetuses in sharks in a noninvasive manner using this technique has not been reported previously. Sharks were caught out of the “Oceanarium” tank by divers using a specially made catch‐out bag, and brought to a holding area for examination. A behavior scoring system was used to monitor the impact of regular handling on the well‐being of the animals. Ultrasound showed the growth and regression of follicles in sevengill ovaries, and allowed an approximation of the reproductive stage of these sharks. Monitoring behavior at five time points during the procedure showed that regular handling of sharks for clinical studies could be done with minimal impact on animal welfare. The ability to follow reproductive events in elasmobranches using ultrasonography is an important step in the application of assisted reproductive technology in these species. Assisted reproductive technology, such as monitoring female reproductive cycles and artificial insemination, could potentially be used to maintain genetic diversity and compliment aquaria‐based breeding programs for endangered species such as the gray nurse shark (Carcharias taurus). Zoo Biol 26:383–395, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号