首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有119条查询结果,搜索用时 171 毫秒
61.
Organic solvents enhance intracellular oxidative stress and induce various physiological responses in bacteria. The study shows the morphological changes in Paracoccus sp. SKG when exposed to higher concentrations of acetonitrile, which alter the composition of the membrane fatty acid that accompanies the increase in K+ efflux. This enhances the oxidative stress with greater activities of catalase and super oxide dismutase (SOD). The increased oxidative stress results in the generation of free radicals, which was confirmed by electron paramagnetic resonance (EPR) studies. The free radical scavenging activities were measured by ABTS and DPPH to understand the non-enzymatic defensive system during oxidative stress. The studies demonstrate the increase in free radicals in association with enzymatic and non-enzymatic defense systems under solvent stress.  相似文献   
62.

Background

Tumor necrosis factor superfamily (TNFSF) proteins are involved in the genesis of inflammatory bowel disease (IBD). We examined the association of seven single nucleotide polymorphisms (SNP) in the TNFSF15 gene with Crohn''s disease (CD) and ulcerative colitis (UC) in the Indian population.

Methods

Seven SNPs in the TNFSF15 gene (rs10114470, rs3810936, rs6478108, rs4263839, rs6478109, rs7848647 and rs7869487) were genotyped in 309 CD patients, 330 UC patients and 437 healthy controls using the Sequenom iPLEX MassArray platform. Disease associations were evaluated for allelotypes and for genotypes.

Results

The minor T alleles and the TT genotypes of rs10114470 and rs3810936 were significantly protectively associated with both CD and UC. The CC genotype of rs6478108, AA genotype of rs4263839, the AA genotype of rs6478109, the TT genotype of rs7848647 and the CC genotype of rs7869487 were all protectively associated with CD but not with UC. Two haplotype blocks could be discerned, one where SNPs rs10114470 and rs3810936 were in tight LD (D′ = 0.8) and the other where rs6478108, rs4263839, rs6478109, rs7848647 and rs7869487 were in tight LD (D′ 0.92–1.00). The second block of haplotypes were not associated with CD or with UC. The first block of haplotypes was very significantly associated with both CD and UC.

Conclusions

Strong associations exist between TNFSF15 gene polymorphisms and IBD (both CD and UC) in the Indian population.  相似文献   
63.
64.
65.
66.
? Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. ? We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. ? We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. ? We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome.  相似文献   
67.
The photorespiratory enzyme glycolate oxidase (GOX) was found to be involved in nonhost resistance by regulating plant defense responses through the production of H2O2. Silencing of a gene encoding NADPH oxidase (AtRBOHD) in the gox mutants did not further increase susceptibility to a nonhost pathogen, P. syringae pv tabaci, although it caused an increase in bacterial growth in the Atgox1 and Atgox3 mutant backgrounds. In order to confirm this finding, we created double homozygous knockouts AtrbohD x Atgox1 and AtrbohD x Atgox3 to evaluate symptom development and bacterial growth. Here we show that there is no additive effect of disease symptoms or bacterial growth in the AtrbohD x Atgox1 and AtrbohD x Atgox3 double mutants when compared with individual mutants. Slight additive effect observed previously upon silencing of AtRBOHD in Atgox1 and Atgox3 mutants was most likely due to cross-silencing of AtRBOHF. These results further prove that GOX plays a role in nonhost resistance independent of NADPH oxidase.  相似文献   
68.
As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen‐fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24‐h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.  相似文献   
69.
Arabidopsis thaliana Stress Associated Protein 9 (AtSAP9) is a member of the A20/AN1 zinc finger protein family known to play important roles in plant stress responses and in the mammalian immune response. Although SAPs of several plant species were shown to be involved in abiotic stress responses, the underlying molecular mechanisms are largely unknown, and little is known about the involvement of SAPs in plant disease responses. Expression of SAP9 in Arabidopsis is up‐regulated in response to dehydration, cold, salinity and abscisic acid (ABA), as well as pathogen infection. Constitutive expression of AtSAP9 in Arabidopsis leads to increased sensitivity to ABA and osmotic stress during germination and post‐germinative development. Plants that overexpress AtSAP9 also showed increased susceptibility to infection by non‐host pathogen Pseudomonas syringae pv. phaseolicola, indicating a potential role of AtSAP9 in disease resistance. AtSAP9 was found to interact with RADIATION SENSITIVE23d (Rad23d), a shuttle factor for the transport of ubiquitinated substrates to the proteasome, and it is co‐localized with Rad23d in the nucleus. Thus, AtSAP9 may promote the protein degradation process by mediating the interaction of ubiquitinated targets with Rad23d. Taken together, these results indicate that AtSAP9 regulates abiotic and biotic stress responses, possibly via the ubiquitination/proteasome pathway.  相似文献   
70.
To produce all-male progenies in the fighting fish, Betta splendens, six groups of fry were subjected to discrete immersion treatment at different 17alpha-methyltestosterone (MT) doses (viz. 100, 200, 500, 700, 900, and 1,000 microg/l) for a constant duration (3 hr/day) and frequency (second, fifth, and eighth day after hatching). The treatment at 900 microg/l led to 98% masculinization and 71% survival at sexual maturity. Treated groups, which showed significant deviation from the 1:1 sex ratio, were classified into two different series: S1 and S2. The groups that showed nearly cent-percent masculinization were classified as S1, and the other groups were classified as S2. The S1 males showed remarkably slower growth and attained 3.5 cm total length compared to 6.0 cm attained by a normal male. The S2 males attained 5.4 cm total length. Apart from these morphological defects, both S1 and S2 males suffered functional (decreased sperm count and sperm motility) and behavioral defects (incomplete embracing during mating) in their reproductive ability, leading to approximately 50% and 30% reduction in fecundity per mating, respectively. The cumulative fecundity loss suffered by the S1 male during its active reproductive phase is discussed. When normal and sex-reversed males were presented, a female preferred the former. Progeny testing of the sex-reversed males showed the occurrence of 12.75% males, indicating the possible role of autosomal genes in the sex determination mechanism of this species. Discrete immersion treatment at optimal/super-optimal doses ensured not only a higher percentage of masculinization, but also a higher frequency of homogametic males (XX).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号