首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有119条查询结果,搜索用时 140 毫秒
111.
Tomato is a well-established model organism for studying many biological processes including resistance and susceptibility to pathogens and the development and ripening of fleshy fruits. The availability of the complete Arabidopsis genome sequence will expedite map-based cloning in tomato on the basis of chromosomal synteny between the two species, and will facilitate the functional analysis of tomato genes.  相似文献   
112.
113.
114.
In recent years, concerns about the use of glyphosate‐resistant crops have increased because of glyphosate residual levels in plants and development of herbicide‐resistant weeds. In spite of identifying glyphosate‐detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo‐keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate‐mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1‐ or OsAKRI‐expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta.  相似文献   
115.
Endothelial cells are the primary targets of circulating immune and inflammatory mediators. We hypothesize that interleukin-18, a proinflammatory cytokine, induces endothelial cell apoptosis. Human cardiac microvascular endothelial cells (HCMEC) were treated with interleukin (IL) 18. mRNA expression was analyzed by ribonuclease protection assay, protein levels by immunoblotting, and cell death by enzyme-linked immunosorbent assay and fluorescence-activated cell sorter analysis. We also investigated the signal transduction pathways involved in IL-18-mediated cell death. Treatment of HCMEC with IL-18 increases 1) NF-kappaB DNA binding activity; 2) induces kappaB-driven luciferase activity; 3) induces IL-1beta and TNF-alpha expression via NF-kappaB activation; 4) inhibits antiapoptotic Bcl-2 and Bcl-X(L); 5) up-regulates proapoptotic Fas, Fas-L, and Bcl-X(S) expression; 6) induces fas and Fas-L promoter activities via NF-kappaB activation; 7) activates caspases-8, -3, -9, and BID; 8) induces cytochrome c release into the cytoplasm; 9) inhibits FLIP; and 10) induces HCME cell death by apoptosis as seen by increased annexin V staining and increased levels of mono- and oligonucleosomal fragmented DNA. Whereas overexpression of Bcl-2 significantly attenuated IL-18-induced endothelial cell apoptosis, Bcl-2/Bcl-X(L) chimeric phosphorothioated 2'-MOE-modified antisense oligonucleotides potentiated the proapoptotic effects of IL-18. Furthermore, caspase-8, IKK-alpha, and NF-kappaB p65 knockdown or dominant negative IkappaB-alpha and dominant negative IkappaB-beta or kinase dead IKK-beta significantly attenuated IL-18-induced HCME cell death. Effects of IL-18 on cell death are direct and are not mediated by intermediaries such as IL-1beta, tumor necrosis factor-alpha, or interferon-gamma. Taken together, our results indicate that IL-18 activates both intrinsic and extrinsic proapoptotic signaling pathways, induces endothelial cell death, and thereby may play a role in myocardial inflammation and injury.  相似文献   
116.
Protocol for androgenetic cloning of the rosy barb, Puntius conchonius, with contrasting gray and golden strains is described. At the intensity of 4.2 W/m2, UV irradiation for 3.0 min inactivates the maternal genome in eggs of the gray barb. Following activation by the golden barb sperm, 24-min old eggs are shocked at 41 degrees C for 2 min to restore diploidy. Maternal genomic inactivation is confirmed by the (i) golden body color, (ii) karyotyping, and (iii) progeny testing of F1-F3 progenies. Estimates of stage-specific mortality of haploid and diploid androgenotes indicate no change in the time scale or developmental sequence, when sperm of related strain is used for activation, and when haploid genome regulates the development. Survival of androgenetic clones remains constant for the F1, F2, and F3 progenies and is about 15% and 7% at hatching and sexual maturity, respectively. Homozygosity of the androgenotes is shown to inflict greater mortality. Between F1 and F3 generations, the heterozygosity of the androgenetic clone is decreased, as evidenced by reduction in size hierarchy. Though the reproductive performance of the F1, F2, and F3 supermales is superior to the normal ones, the realized fecundity remains equal around 80 progenies per brood. The 92 crosses involving 16 supermales and 10 normal dams yield 75-100% male progenies, confirming the possible operation of XXfemale symbol:XYmale symbol sex determination system. The frequency of unexpected occurrence of female progenies is about 8%, the causes for which are discussed.  相似文献   
117.
The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e., nicks) of the staple strands. In molecular biology, enzymatic ligation is commonly used to seal the nicks in the duplex DNA. However, in DNA nanotechnology, the ligation procedures are neither optimized for the DNA origami nor routinely applied to link the nicks in it. Here, we report a detailed analysis and optimization of the conditions for the enzymatic ligation of the staple strands in four types of 2D square lattice DNA origami. Our results indicated that the ligation takes overnight, efficient at 37°C rather than the usual 16°C or room temperature, and typically requires much higher concentration of T4 DNA ligase. Under the optimized conditions, up to 10 staples ligation with a maximum ligation efficiency of 55% was achieved. Also, the ligation is found to increase the thermal stability of the origami as low as 5°C to as high as 20°C, depending on the structure. Further, our studies indicated that the ligation of the staple strands influences the globular structure/planarity of the DNA origami, and the origami is more compact when the staples are ligated. The globular structure of the native and ligated origami was also found to be altered dynamically and progressively upon ethidium bromide intercalation in a concentration-dependent manner.  相似文献   
118.
119.
Many plant species open their leaves during the daytime and close them at night as if sleeping. This leaf movement is known as nyctinasty, a unique and intriguing phenomenon that been of great interest to scientists for centuries. Nyctinastic leaf movement occurs widely in leguminous plants, and is generated by a specialized motor organ, the pulvinus. Although a key determinant of pulvinus development, PETIOLULE-LIKE PULVINUS (PLP), has been identified, the molecular genetic basis for pulvinus function is largely unknown. Here, through an analysis of knockout mutants in barrelclover (Medicago truncatula), we showed that neither altering brassinosteroid (BR) content nor blocking BR signal perception affected pulvinus determination. However, BR homeostasis did influence nyctinastic leaf movement. BR activity in the pulvinus is regulated by a BR-inactivating gene PHYB ACTIVATION TAGGED SUPPRESSOR1 (BAS1), which is directly activated by PLP. A comparative analysis between M. truncatula and the non-pulvinus forming species Arabidopsis and tomato (Solanum lycopersicum) revealed that PLP may act as a factor that associates with unknown regulators in pulvinus determination in M. truncatula. Apart from exposing the involvement of BR in the functionality of the pulvinus, these results have provided insights into whether gene functions among species are general or specialized.

Nyctinasty is triggered by the pulvinus, a motor organ located at the base of the leaf and brassinosteroids is involved in functionality of pulvinus for leaf movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号