首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1576篇
  免费   79篇
  国内免费   1篇
  2024年   3篇
  2023年   8篇
  2022年   16篇
  2021年   60篇
  2020年   33篇
  2019年   29篇
  2018年   55篇
  2017年   39篇
  2016年   58篇
  2015年   57篇
  2014年   77篇
  2013年   113篇
  2012年   157篇
  2011年   121篇
  2010年   85篇
  2009年   80篇
  2008年   113篇
  2007年   103篇
  2006年   76篇
  2005年   64篇
  2004年   72篇
  2003年   52篇
  2002年   42篇
  2001年   9篇
  2000年   10篇
  1999年   7篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   9篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1966年   2篇
排序方式: 共有1656条查询结果,搜索用时 15 毫秒
81.
After a previous mass screening and enrichment programme for the isolation of thermotolerant yeasts, VS1, VS2, VS3 and VS4 strains isolated from soil samples, collected within the hot regions of Kothagudem Thermal Power Plant, AP, India, had a better thermotolerance, osmotolerance and ethanol tolerance than the other isolates. Among these isolates VS1 and VS3 were best performers. Efforts were made to further improve their osmotolerance, thermotolerance and ethanol tolerance by treating them with UV radiation. Mutants of VS1 and VS3 produced more biomass and ethanol than the parent strains at high temperature and glucose concentrations. The amount of biomass produced by VS1 and VS3 mutants was 0.25 and 0.20 g l(-1) more than the parent strains at 42 degrees C using 2% glucose. At high glucose concentrations VS1 and VS3 mutants produced biomass which was 0.70 and 0.30 g l(-1) at 30 degrees C and 0.10 and 0.20 g l(-1) at 40 degrees C more than the parent strains. The amount of ethanol produced by the mutants (VS1 and VS3) was 8.20 and 1.20 g l(-1) more than the parent strains at 42 degrees C using 150 g l(-1) glucose. More ethanol was produced by mutants (VS1 and VS3) than the parents at high glucose concentrations of 5.0 and 6.0 g l(-1) at 30 degrees C and 13.0 and 3.0 g l(-1) at 42 degrees C, respectively. These results indicated that UV mutagenesis can be used for improving thermotolerance, ethanol tolerance and osmotolerance in VS1 and VS3 yeast strains.  相似文献   
82.
Dhawan S 《Peptides》2002,23(12):2099-2110
Spherical polystyrene microparticles expressing a large number of highly reactive functional groups were chemically engineered to generate antibody–enzyme conjugates as novel signal amplification systems. Chemically modified goat anti-human IgG and horseradish peroxidase (HRP) were combined in a 1:5 ratio and attached to 0.44 μm streptavidin microparticles or N-succinimidyl-S-acetylthioacetate (SATA)-activated 0.29 μm amino microparticles with highly reactive free sulfhydryl groups on their surface. The numbers of HRP molecules/microparticle were further increased by coupling HRP to primary amines on N-terminal biotinylated or bromoacetylated polypeptides containing 20 lysine residues prior to conjugation with streptavidin or sulfhydryl groups-containing microparticles. The antibody–poly-HRP immunoconjugates contained an estimated number of 105 HRP/streptavidin microparticle and 106 HRP/amino microparticle, respectively. These microparticle immunoconjugates efficiently bound to plasma anti-HIV-1 antibodies that had been captured by HIV antigens on 5 μm carboxyl magnetic microparticles and, upon reaction with orthophenyldiamine substrate, produced a detection signal with 5–8 times more sensitivity as compared to conventional HRP-conjugated goat anti-human IgG. The signal amplification technique by microparticle immunoconjugates may provide potentially novel tools for the development of highly sensitive diagnostic systems.  相似文献   
83.
Dhawan S 《Peptides》2002,23(12):1239-2098
Immunoconjugates are widely used for indirect detection of analytes (such as antibodies or antigens) in a variety of immunoassays. However, the availability of functional groups such as primary amines or free sulfhydryls in an immunoglobulin molecule is the limiting factor for optimal conjugation and, therefore, determines the sensitivity of an assay. In the present study, an N-terminal bromoacetylated 20 amino acid peptide containing 20 lysine residues was conjugated to N-succinimidyl-S-acetylthioacetate (SATA)-modified IgG or free sulfhydryl groups on 2-mercaptoethylamine (2-MEA)-reduced IgG molecules via a thioether (S---CH2CONH) linkage to introduce multiple reactive primary amines per IgG. These primary amines were then covalently coupled with maleimide-activated horseradish peroxidase (HRP). The poly-HRP–antibody conjugates thus generated demonstrated greater than 15-fold signal amplification upon reaction with orthophenyldiamine substrate. The poly-HRP–antibody conjugates efficiently detected human immunodeficiency virus (HIV)-1 antibodies in plasma specimens with significantly higher sensitivity than conventionally prepared HRP–antibody conjugates in an HIV-1 solid-phase enzyme immunoassay and Western blot analysis. The signal amplification techniques reported here could have the potential for development of highly sensitive immunodiagnostic assay systems.  相似文献   
84.
Rad23 contains a ubiquitin-like domain (UbL(R23)) that interacts with catalytically active proteasomes and two ubiquitin (Ub)-associated (UBA) sequences that bind Ub. The UBA domains can bind Ub in vitro, although the significance of this interaction in vivo is poorly understood. Rad23 can interfere with the assembly of multi-Ub chains in vitro, and high-level expression caused stabilization of proteolytic substrates in vivo. We report here that Rad23 interacts with ubiquitinated cellular proteins through the synergistic action of its UBA domains. Rad23 plays an overlapping role with Rpn10, a proteasome-associated multi-Ub chain binding protein. Mutations in the UBA domains prevent efficient interaction with ubiquitinated proteins and result in poor suppression of the growth and proteolytic defects of a rad23 Delta rpn10 Delta mutant. High-level expression of Rad23 revealed, for the first time, an interaction between ubiquitinated proteins and the proteasome. This increase was not observed in rpn10 Delta mutants, suggesting that Rpn10 participates in the recognition of proteolytic substrates that are delivered by Rad23. Overexpression of UbL(R23) caused stabilization of a model substrate, indicating that an unregulated UbL(R23)-proteasome interaction can interfere with the efficient delivery of proteolytic substrates by Rad23. Because the suppression of a rad23 Delta rpn10 Delta mutant phenotype required both UbL(R23) and UBA domains, our findings support the hypothesis that Rad23 encodes a novel regulatory factor that translocates ubiquitinated substrates to the proteasome.  相似文献   
85.
A simple spectrophotometric method to monitor the catalytic activity of microsomal cytochrome P-450 IIB1/2 has been developed. The method employs measurement of utilization of NADPH, consumption of the substrate, pentoxyresorufin (PRF) and formation of the product, resorufin (RF) in the same reaction mixture containing hepatic microsomes from phenobarbital treated rats. The velocity of NADPH utilization (16.36 nmole/min/nmole P-450), PRF consumption (1.58 nmole/min/nmole P-450) and RF formation (1.57 nmole/min/nmole P-450) suggested a stoichiometry of 1:1 between the substrate and the product alongwith utilization of 10 molecules of NADPH. However, the Km for the enzyme activity (nmole RF formed/min/nmole P-450) using varying concentrations of PRF and NADPH as substrates were found to be 11.6 and 20.2 microM, respectively. The spectrophotometric method was compared with fluorometric method in terms of linearity with time, P-450 content and Vmax, Km values observed for the reaction. Inhibition studies with metyrapone and SKF 525A in the utilization of NADPH, consumption of PRF and formation of RF suggested that the method could be useful in monitoring the effect of various inhibitors on the P-450 IIB1/2 reaction.  相似文献   
86.
Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein.  相似文献   
87.
New Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) metal complexes of buparvaquone [3-trans(4-tert.-butylcyclohexyl)methyl-2-hydroxy-1,4-naphthoquione] (L1H) have been synthesized and characterized using IR, electron paramagnetic resonance (EPR) spectroscopy, microanalytical methods and single crystal X-ray diffraction methods. The single crystal structures were determined for ligand L1H [space group P-1 with a=6.2072(14) A, b=10.379 (2) A, c=13.840 (3) A, V=878.7(3) A(3), Z=2, D(calcd.)=1.234 mg/m(3)] and copper complex [Cu(L1)(2)(C(2)H(5)OH)(2)] C1 [space group I2/a with a=17.149(14) A, b=9.4492(8) A, c=26.946(3) A, V=4335.3(7)A(3), Z=4, D(calcd.)=1.233 mg/m(3)]. All the metal complexes along with the parent ligand have been studied for their electrochemical properties using cyclic voltammetric techniques. The compounds were tested for their in vitro antimalarial activity against Plasmodium falciparum strains. A correlation between the antimalarial activity and the redox property of these complexes is presented. The copper complex C1 exhibits significantly higher growth inhibitory activity both in vitro and in vivo than the parent ligand.  相似文献   
88.
The use of high-throughput DNA sequencing and proteomic methods has led to an unprecedented increase in the amount of genomic and proteomic data. Application of computing technologies and development of computational tools to analyze and present these data has not kept pace with the accumulation of information. Here, we discuss the use of different database systems to store biological information and mention some of the key emerging computing technologies that are likely to have a key role in the future of bioinformatics.  相似文献   
89.
The metabolisms of arginine (Arg), ornithine (Orn), and putrescine were compared in a nontransgenic and a transgenic cell line of carrot (Daucus carota L.) expressing a mouse Orn decarboxylase cDNA. [14C]Arg, [14C]Orn, and [14C]putrescine were fed to cells and their rates of decarboxylation, uptake, metabolism into polyamines, and incorporation into acid-insoluble material were determined. Transgenic cells showed higher decarboxylation rates for labeled Orn than the nontransgenic cells. This was correlated positively with higher amounts of labeled putrescine production from labeled Orn. With labeled Arg, both the transgenic and the nontransgenic cells exhibited similar rates of decarboxylation and conversion into labeled putrescine. When [14C]putrescine was fed, higher rates of degradation were observed in transgenic cells as compared with the nontransgenic cells. It is concluded that (a) increased production of putrescine via the Orn decarboxylase pathway has no compensatory effects on the Arg decarboxylase pathway, and (b) higher rates of putrescine production in the transgenic cells are accompanied by higher rates of putrescine conversion into spermidine and spermine as well as the catabolism of putrescine.  相似文献   
90.
Neuronal signaling systems and ethanol dependence   总被引:2,自引:0,他引:2  
In recent years there have been remarkable developments toward the understanding of the molecular and/or cellular changes in the neuronal second-messenger pathways during ethanol dependence. In general, it is believed that the cyclic adenosine 3′, 5′-monophosphate (cAMP) and the phosphoinositide (PI) signal-transduction pathways may be the intracellular targets that mediate the action of ethanol and ultimately contribute to the molecular events involved in the development of ethanol tolerance and dependence. Several laboratories have demonstrated that acute ethanol exposure increases, whereas protracted ethanol exposure decreases, agonist-stimulated adenylate cyclase activity in a variety of cell systems, including the rodent brain. Recent studies indicate that various postreceptor events of the cAMP signal transduction cascade (i.e., Gs protein, protein kinase A [PKA], and cAMP-responsive element binding protein [CREB]) in the rodent brain are also modulated by chronic ethanol exposure. The PI signal-transduction cascade represents another important second-messenger system that is modulated by both acute and chronic ethanol exposure in a variety of cell systems. It has been shown that protracted ethanol exposure significantly decreases phospholipase C (PLC) activity in the cerebral cortex of mice and rats. The decreased PLC activity during chronic ethanol exposure may be caused by a decrease in the protein levels of the PLC-Β1 isozyme but not of PLC-δ1 or PLC-γ1 isozymes in the rat cerebral cortex. Protein kinase C (PKC), which is a key step in the Pi-signaling cascade, has been shown to be altered in a variety of cell systems by acute or chronic ethanol exposure. It appears from the literature that PKC plays an important role in the modulation of the function of various neurotransmitter receptors (e.g., γ-aminobutyrate type A [GABAa], N-methyl-D-aspartate [NMDA], serotonin2A [5-HT2a], and 5-HT2C, and muscarinic [m1] receptors) resulting from ethanol exposure. The findings described in this review article indicate that neuronal-signaling proteins represent a molecular locus for the action of ethanol and are possibly involved in the neuroadaptational mechanisms to protracted ethanol exposure. These findings support the notion that alterations in the cAMP and the PI-signaling cascades during chronic ethanol exposure could be the critical molecular events associated with the development of ethanol dependence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号