首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  52篇
  2019年   1篇
  2012年   2篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1988年   3篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1966年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
11.
12.
13.
Detection of NaCl and KCl in TRPV1 knockout mice   总被引:3,自引:0,他引:3  
Both amiloride-sensitive and -insensitive mechanisms contribute to NaCl taste transduction. The amiloride-sensitive mechanism relies on the epithelial Na(+) channel ENaC, which is widely expressed on the apical membrane of fungiform taste cells. The amiloride-insensitive mechanism, which predominates in circumvallate and foliate taste buds, was recently reported to involve a variant of the nonselective cation channel TRPV1. We performed 2-bottle preference and threshold experiments with TRPV1 knockout mice and wild-type (C57BL/6J) controls to test for NaCl preference and detection thresholds in the presence and absence of amiloride. Surprisingly, TRPV1 knockout mice not only detected NaCl in the presence of amiloride but they preferred NaCl over water at concentrations avoided by the wild-type mice. NaCl detection thresholds were between 2 and 3 mM for both genotypes. Amiloride increased the detection thresholds of wild-type mice but not knockout mice. The knockout mice also preferred 100 mM KCl compared with wild-type controls, suggesting that TRPV1 receptors may mediate a general aversive response to salts. Analyses of consumption data also revealed that TRPV1 knockout mice ingested more of the NaCl, with and without amiloride, and KCl solutions than the wild-type mice. However, comparisons of preference ratios and consumption volumes indicated that both wild-type and TRPV1 knockout mice avoided citric acid in quite a similar manner, suggesting that TRPV1 receptors do not mediate the detection of citric acid. These data, taken together, suggest that additional mechanisms must contribute to the amiloride-insensitive NaCl response.  相似文献   
14.
The trigeminal nerve responds to a wide variety of irritants. Trigeminal nerve fibers express several receptors that respond to chemicals, including TRPV1 (vanilloid) receptors, acid-sensing ion channels, P2X (purinergic) receptors, and nicotinic acetylcholine receptors. In order to assess whether TRPV1 plays a role in responses to a broad array of substances, TRPV1 (along with green fluorescent protein) was expressed in human embyonic kidney cells (HEK) 293t cells which were then stimulated with diverse trigeminal irritants. Calcium imaging was used to measure responses to capsaicin, amyl acetate, cyclohexanone, acetic acid, toluene, benzaldehyde, (-)-nicotine, (R)-(+)-limonene, (R)-(-)-carvone, and (S)-(+)-carvone. Three irritants (acetic acid and the 2 carvones) stimulated nontransfected controls. Two irritants (capsaicin and cyclohexanone) stimulated only transfected cells. The response could be eliminated with capsazepine, a TRPV1 blocker. The 5 remaining irritants were nonstimulatory in both nontransfected and transfected cells. Because all the compounds tested on HEK cells elicited neural responses from the ethmoid branch of the trigeminal nerve in rats, the 5 nonstimulatory compounds must do so by a non-TRPV1 receptor. These results suggest that TRPV1 serves as a receptor for both cyclohexanone and capsaicin in trigeminal nerve endings.  相似文献   
15.
The activity of taste cells maintained in the intact hamster tongue was monitored in response to acid stimulation by recording action currents from taste receptor cells with an extracellular "macro" patch pipette: a glass pipette was pressed over the taste pore of fungiform papillae and perfused with citric acid, hydrochloric acid, or NaCl. Because this technique restricted stimulus application to the small surface area of the apical membranes of the taste cells, many nonspecific, and potentially detrimental, effects of acid stimulation could be avoided. Acid stimulation reliably elicited fast transient currents (action currents of average amplitude, 9 pA) which were consistently smaller than those elicited by NaCl (29 pA). The frequency of action currents elicited by acid stimuli increased in a dose-dependent manner with decreasing pH from a threshold of about pH 5.0. Acid-elicited responses were independent of K+, Na+, Cl-, or Ca2+ at physiological (salivary) concentrations, and were unaffected by anthracene-9-carboxylic acid, tetraethylammonium bromide, diisothiocyanate-stilbene-2,2'-disulfonic acid, vanadate, or Cd2+. In contrast, amiloride (< or = 30 microM) fully and reversibly suppressed acid-evoked action currents. At submaximal amiloride concentrations, the frequency and amplitude of the action currents were reduced, indicating a reduction of the taste cell apical conductance concomitant with a decrease in cell excitation. Exposure to low pH elicited, in addition to transient currents, an amiloride-sensitive sustained d.c. current. This current is apparently carried by protons instead of Na+ through amiloride-sensitive channels. When citric acid was applied while the taste bud was stimulated by NaCl, the action currents became smaller and the response resembled that produced by acid alone. Because of the strong interdependence of the acid and salt (NaCl) responses when both stimuli are applied simultaneously, and because of the similarity in the concentration dependence of amiloride block, we conclude that amiloride-sensitive Na+ channels on hamster taste receptor cells are permeable to protons and may play a role in acid (sour) taste.  相似文献   
16.
The development of the flight motor pattern was studied by recording acutely with fine wire electrodes inserted in the thoracic muscles of pharate moths of known age and by recording chronically for up to 8 days with implanted electrodes. Externally visible morphological characteristics by which the age of a pharateManduca sexta can be established were identified (Table 1). Bouts of activity lasting approximately 30 min to 2 h and alternating with inactive periods of similar duration were recorded as early as the ninth day after pupation and on all successive days until early on the day of eclosion, typically 19 days after pupation (Figs. 1,5). During the 3 days preceding the day of eclosion a rhythmic flight motor pattern was produced (Fig. 2). The rhythmic activity ceased 51/2–101/2 h before eclosion and only an occasional, large potential change was recorded from the thoracic muscles during this time (Fig. 3). During the 3 days of rhythmic activity the percent-age of time that the animal was active did not change (Fig. 4). The flight motor pattern matured, in that the cycle-time decreased and became less variable (Fig. 6). The approximate flight phase relationship between an elevator muscle and the dorsal longitudinal depressor muscle did not become less variable as the cycle-time improved. The flight motor pattern produced by pharate moths caused neither movement of the scutum nor an increase in thoracic temperature in marked contrast to the consequences of adult motor activity (Fig. 7). Intracellular recording from the dorsal longitudinal muscle of pharate moths 20–30 h before eclosion showed that, after repeated stimulation of the motor nerve at 2/s, only small junctional potentials were elicited (Fig. 8). A burst of 6 stimuli at 50/s elicited 2–5 active membrane responses and a contraction. These observations explain the absence of thoracic movement in immature animals producing the flight motor pattern and the presence of movement in immature animals stimulated to eclose. They also show that the neuromuscular junction matures rapidly during the day before eclosion.  相似文献   
17.
18.
19.
Foreign genes can be transferred into taste cells via adenoviral vectors. The present study was undertaken to characterize the subpopulation of taste cells that are susceptible to adenovirus infection and to determine whether another viral vector, derived from herpes simplex 1 (HSV-1), infects the same subpopulation of taste cells. Using an adenovirus containing the gene for enhanced green fluorescent protein (EGFP) under the control of the human cytomegalovirus (CMV) immediate early promoter, we found that EGFP was present in blood group antigen H immunoreactive (ir) taste cells, but not in gustducin-ir or PGP 9.5-ir cells. Infection of taste buds with an HSV-1 vector containing EGFP also resulted in a subpopulation of EGFP-positive taste cells. However, both gustducin-ir and PGP 9.5-ir taste cells expressed the marker protein. In conclusion, this study shows that both adenoviral and HSV-1 vectors can be used to transfer foreign genes into the cells of isolated rat taste buds and that different viruses can be used to target specific subpopulations of taste cells.  相似文献   
20.
Response features of taste receptor cell action potentials were examined using an artificial neural network to determine whether they contain information about taste quality. Using the loose patch technique to record from hamster taste buds in vivo we recorded population responses of single fungiform papillae to NaCl (100 mM), sucrose (200 mM) and the synthetic sweetener NC-00274-01 (NC-01) (200 microM). Features of each response describing both burst and inter-burst characteristics were then presented to an artificial neural network for pairwise classification of taste stimuli. Responses to NaCl could be distinguished from those to both NC-01 and sucrose with accuracies of up to 86%. In contrast, pairwise comparisons between sucrose and NC-01 were not successful, scoring at chance (50%). Also, comparisons between two different concentrations of NaCl, 0.01 and 0.005 M, scored at chance. Pairwise comparisons using only those features that relate to the inter-burst behavior of the response (i.e. bursting rate) did not hinder the performance of the neural network as both sweeteners versus NaCl received scores of 75--85%. Comparisons using features corresponding to each individual burst scored poorly, receiving scores only slightly above chance. We then compared the sweeteners with varying concentrations of NaCl (0.1, 0.01, 0.005 and 0.001 M) using only those features corresponding to bursting rate within a 1 s time window. The neural network was capable of distinguishing between NaCl and NC-01 at all concentrations tested; while comparisons between NaCl and sucrose received high scores at all concentrations except 0.001 M. These results show that two different taste qualities can be distinguished from each other based solely on the bursting rates of action potentials in single taste buds and that this distinction is independent of stimulation intensity down to 0.001 M NaCl. These data suggest that action potentials in taste receptor cells may play a role in taste quality coding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号