首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   65篇
  2022年   3篇
  2021年   12篇
  2020年   8篇
  2019年   4篇
  2018年   12篇
  2017年   10篇
  2016年   18篇
  2015年   28篇
  2014年   35篇
  2013年   33篇
  2012年   28篇
  2011年   20篇
  2010年   15篇
  2009年   24篇
  2008年   20篇
  2007年   16篇
  2006年   16篇
  2005年   17篇
  2004年   18篇
  2003年   11篇
  2002年   18篇
  2001年   20篇
  2000年   14篇
  1999年   11篇
  1998年   14篇
  1997年   6篇
  1996年   5篇
  1995年   12篇
  1994年   5篇
  1993年   6篇
  1992年   11篇
  1991年   3篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   5篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
  1962年   2篇
  1961年   2篇
排序方式: 共有547条查询结果,搜索用时 234 毫秒
31.
Despite the unprecedented global decline in extant populations of Aldrovanda vesiculosa in the last century, little is known about the reproductive biology of this iconic aquatic carnivorous plant. This study aimed to investigate the role of seed‐based reproduction in the ecology of A. vesiculosa, with particular focus on the interplay between the regulation of seed dormancy by temperature cues and the efficacy of exogenous ethylene gas to act as a germination stimulant, the desiccation capacity and long‐term storage potential of seeds for conservation purposes. Sexual reproduction appears to be extremely limited in both natural and naturalized populations across three continents, with high variability in the success of flowering and seed set between sites and between seasons. Overall, flowering yielded few fertile fruit (6–19% of flowers producing fertile fruit) and seed viability was variable but generally low (29–88%). Fecundity appears to be influenced by seasonal climatic conditions and microhabitat characteristics. Aldrovanda vesiculosa possesses physiologically dormant seeds, with germination stimulated by exposure to ethylene gas (>90% germination) at 25 °C. Seeds appear sensitive to desiccation and sub‐zero temperature storage, with no germination and markedly reduced embryo growth after storage of seeds for >1 month at 15 °C and 15% relative humidity or after short‐term (24 h) storage at ?18 °C. In the absence of significant conservation and restoration initiatives, the continuing decline of dystrophic freshwater wetland habitats globally leaves A. vesiculosa facing extinction. As the successful long‐term storage of seeds appears unfeasible based on the approaches described in this study, other alternatives for germplasm conservation such as cryostorage of vegetative tissues or zygotic embryos must be considered for establishing long‐term ex situ collections of critical germplasm.  相似文献   
32.
Serratia marcescens is a versatile opportunistic pathogen that can cause a variety of infections, including bacteremia. Our previous work established that the capsule polysaccharide (CPS) biosynthesis and translocation locus contributes to the survival of S. marcescens in a murine model of bacteremia and in human serum. In this study, we determined the degree of capsule genetic diversity among S. marcescens isolates. Capsule loci (KL) were extracted from >300 S. marcescens genome sequences and compared. A phylogenetic comparison of KL sequences demonstrated a substantial level of KL diversity within S. marcescens as a species and a strong delineation between KL sequences originating from infection isolates versus environmental isolates. Strains from five of the identified KL types were selected for further study and electrophoretic analysis of purified CPS indicated the production of distinct glycans. Polysaccharide composition analysis confirmed this observation and identified the constituent monosaccharides for each strain. Two predominant infection-associated clades, designated KL1 and KL2, emerged from the capsule phylogeny. Bacteremia strains from KL1 and KL2 were determined to produce ketodeoxynonulonic acid and N-acetylneuraminic acid, two sialic acids that were not found in strains from other clades. Further investigation of KL1 and KL2 sequences identified two genes, designated neuA and neuB, that were hypothesized to encode sialic acid biosynthesis functions. Disruption of neuB in a KL1 isolate resulted in the loss of sialic acid and CPS production. The absence of sialic acid and CPS production also led to increased susceptibility to internalization by a human monocytic cell line, demonstrating that S. marcescens phagocytosis resistance requires CPS. Together, these results establish the capsule genetic repertoire of S. marcescens and identify infection-associated clades with sialic acid CPS components.  相似文献   
33.
Although it is widely accepted that there is a hierarchy in the susceptibility of different allografts to rejection, the mechanisms responsible are unknown. We show that the increased susceptibility of H-2K(b+) skin and islet allografts to rejection is not based on their ability to activate more H-2K(b)-specific T cells in vivo; heart allografts stimulate the activation and proliferation of many more H-2K(b)-specific T cells than either skin or islet allografts. Rejection of all three types of graft generate memory cells by 25 days posttransplant. These data provide evidence that neither tissue-specific Ags nor, surprisingly, the number of APCs carried in the graft dictate their susceptibility to T cell-mediated rejection and suggest that the graft microenvironment and size may play a more important role in determining the susceptibility of an allograft to rejection and resistance to tolerance induction.  相似文献   
34.
35.
Viral fusion protein trimers can play a critical role in limiting lipids in membrane fusion. Because the trimeric oligomer of many viral fusion proteins is often stabilized by hydrophobic 4-3 heptad repeats, higher-order oligomers might be stabilized by similar sequences. There is a hydrophobic 4-3 heptad repeat contiguous to a putative oligomerization domain of Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64. We performed mutagenesis and peptide inhibition studies to determine if this sequence might play a role in catalysis of membrane fusion. First, leucine-to-alanine mutants within and flanking the amino terminus of the hydrophobic 4-3 heptad repeat motif that oligomerize into trimers and traffic to insect Sf9 cell surfaces were identified. These mutants retained their wild-type conformation at neutral pH and changed conformation in acidic conditions, as judged by the reactivity of a conformationally sensitive mAb. These mutants, however, were defective for membrane fusion. Second, a peptide encoding the portion flanking the GP64 hydrophobic 4-3 heptad repeat was synthesized. Adding peptide led to inhibition of membrane fusion, which occurred only when the peptide was present during low pH application. The presence of peptide during low pH application did not prevent low pH-induced conformational changes, as determined by the loss of a conformationally sensitive epitope. In control experiments, a peptide of identical composition but different sequence, or a peptide encoding a portion of the Ebola GP heptad motif, had no effect on GP64-mediated fusion. Furthermore, when the hemagglutinin (X31 strain) fusion protein of influenza was functionally expressed in Sf9 cells, no effect on hemagglutinin-mediated fusion was observed, suggesting that the peptide does not exert nonspecific effects on other fusion proteins or cell membranes. Collectively, these studies suggest that the specific peptide sequences of GP64 that are adjacent to and include portions of the hydrophobic 4-3 heptad repeat play a dynamic role in membrane fusion at a stage that is downstream of the initiation of protein conformational changes but upstream of lipid mixing.  相似文献   
36.
37.
Utilization of ferrioxamines as sole sources of iron distinguishes Salmonella enterica serotypes Typhimurium and Enteritidis from a number of related species, including Escherichia coli. Ferrioxamine supplements have therefore been used in preenrichment and selection media to increase the bacterial growth rate while selectivity is maintained. We characterized the determinants involved in utilization of ferrioxamines B, E, and G by S. enterica serotype Typhimurium by performing siderophore cross-feeding bioassays. Transport of all three ferric siderophores across the outer membrane was dependent on the FoxA receptor encoded by the Fur-repressible foxA gene. However, only the transport of ferrioxamine G was dependent on the energy-transducing protein TonB, since growth stimulation of a tonB strain by ferrioxamines B and E was observed, albeit at lower efficiencies than in the parental strain. Transport across the inner membrane was dependent on the periplasmic binding protein-dependent ABC transporter complex comprising FhuBCD, as has been reported for other hydroxamate siderophores of enteric bacteria. The distribution of the foxA gene in the genus Salmonella, as indicated by DNA hybridization studies and correlated with the ability to utilize ferrioxamine E, was restricted to subspecies I, II, and IIIb, and this gene was absent from subspecies IIIa, IV, VI, and VII (formerly subspecies IV) and Salmonella bongori (formerly subspecies V). S. enterica serotype Typhimurium mutants with either a transposon insertion or a defined nonpolar frameshift (+2) mutation in the foxA gene were not able to utilize any of the three ferrioxamines tested. A strain carrying the nonpolar foxA mutation exhibited a significantly reduced ability to colonize rabbit ileal loops compared to the foxA+ parent. In addition, a foxA mutant was markedly attenuated in mice inoculated by either the intragastric or intravenous route. Mice inoculated with the foxA mutant were protected against subsequent challenge by the foxA+ parent strain.  相似文献   
38.
39.
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.  相似文献   
40.
Immunohistochemical localization of low-level antigens in the arterial vasculature is complicated by the presence of complex molecules such as collagen, elastin, cholesterol, and fluorescent lipids that exhibit autofluorescence over a wide spectrum of wavelengths. UV irradiation of arterial vasculature has remained ineffective in preparing samples for immunofluorescent staining because of the recovery of the endogenous fluorescence within a short time following treatment. Therefore, we sought to further enhance the signal-to-noise ratio in arteries by optimizing the photobleaching of this tissue. We report here that the use of filtered sunlight significantly reduces arterial autofluorescence compared to standard UV shortwave and longwave irradiation and maintains multiple antigen epitopes suitable for immunohistochemical analysis. Using this method, we localized low-level laminin-5 isoform expression in situ, which was previously indistinguishable from endogenous autofluorescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号