首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1975年   1篇
  1968年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
21.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   
22.
Secondary contact between divergent populations or incipient species may result in the exchange and introgression of genomic material. We develop a simple DNA sequence measure, called G min, which is designed to identify genomic regions experiencing introgression in a secondary contact model. G min is defined as the ratio of the minimum between-population number of nucleotide differences in a genomic window to the average number of between-population differences. Although it is conceptually simple, one advantage of G min is that it is computationally inexpensive relative to model-based methods for detecting gene flow and it scales easily to the level of whole-genome analysis. We compare the sensitivity and specificity of G min to those of the widely used index of population differentiation, F ST, and suggest a simple statistical test for identifying genomic outliers. Extensive computer simulations demonstrate that G min has both greater sensitivity and specificity for detecting recent introgression than does F ST. Furthermore, we find that the sensitivity of G min is robust with respect to both the population mutation and recombination rates. Finally, a scan of G min across the X chromosome of Drosophila melanogaster identifies candidate regions of introgression between sub-Saharan African and cosmopolitan populations that were previously missed by other methods. These results show that G min is a biologically straightforward, yet powerful, alternative to F ST, as well as to more computationally intensive model-based methods for detecting gene flow.  相似文献   
23.
24.
25.
A 2.4-kb stretch within the RRM2P4 region of the X chromosome, previously sequenced in a sample of 41 globally distributed humans, displayed both an ancient time to the most recent common ancestor (e.g., a TMRCA of approximately 2 million years) and a basal clade composed entirely of Asian sequences. This pattern was interpreted to reflect a history of introgressive hybridization from archaic hominins (most likely Asian Homo erectus) into the anatomically modern human genome. Here, we address this hypothesis by resequencing the 2.4-kb RRM2P4 region in 131 African and 122 non-African individuals and by extending the length of sequence in a window of 16.5 kb encompassing the RRM2P4 pseudogene in a subset of 90 individuals. We find that both the ancient TMRCA and the skew in non-African representation in one of the basal clades are essentially limited to the central 2.4-kb region. We define a new summary statistic called the minimum clade proportion (pmc), which quantifies the proportion of individuals from a specified geographic region in each of the two basal clades of a binary gene tree, and then employ coalescent simulations to assess the likelihood of the observed central RRM2P4 genealogy under two alternative views of human evolutionary history: recent African replacement (RAR) and archaic admixture (AA). A molecular-clock-based TMRCA estimate of 2.33 million years is a statistical outlier under the RAR model; however, the large variance associated with this estimate makes it difficult to distinguish the predictions of the human origins models tested here. The pmc summary statistic, which has improved power with larger samples of chromosomes, yields values that are significantly unlikely under the RAR model and fit expectations better under a range of archaic admixture scenarios.  相似文献   
26.
The evolution of heteromorphic sex chromosomes creates a genetic condition favoring the invasion of sex-ratio meiotic drive elements, resulting in the biased transmission of one sex chromosome over the other, in violation of Mendel's first law. The molecular mechanisms of sex-ratio meiotic drive may therefore help us to understand the evolutionary forces shaping the meiotic behavior of the sex chromosomes. Here we characterize a sex-ratio distorter on the X chromosome (Dox) in Drosophila simulans by genetic and molecular means. Intriguingly, Dox has very limited coding capacity. It evolved from another X-linked gene, which also evolved de nova. Through retrotransposition, Dox also gave rise to an autosomal suppressor, not much yang (Nmy). An RNA interference mechanism seems to be involved in the suppression of the Dox distorter by the Nmy suppressor. Double mutant males of the genotype dox; nmy are normal for both sex-ratio and spermatogenesis. We postulate that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy.  相似文献   
27.
28.
Selfish genes, such as meiotic drive elements, propagate themselves through a population without increasing the fitness of host organisms. X-linked (or Y-linked) meiotic drive elements reduce the transmission of the Y (X) chromosome and skew progeny and population sex ratios, leading to intense conflict among genomic compartments. Drosophila simulans is unusual in having a least three distinct systems of X chromosome meiotic drive. Here, we characterize naturally occurring genetic variation at the Winters sex-ratio driver (Distorter on the X or Dox), its progenitor gene (Mother of Dox or MDox), and its suppressor gene (Not Much Yang or Nmy), which have been previously mapped and characterized. We survey three North American populations as well as 13 globally distributed strains and present molecular polymorphism data at the three loci. We find that all three genes show signatures of selection in North America, judging from levels of polymorphism and skews in the site-frequency spectrum. These signatures likely result from the biased transmission of the driver and selection on the suppressor for the maintenance of equal sex ratios. Coalescent modeling indicates that the timing of selection is more recent than the age of the alleles, suggesting that the driver and suppressor are coevolving under an evolutionary “arms race.” None of the Winters sex-ratio genes are fixed in D. simulans, and at all loci we find ancestral alleles, which lack the gene insertions and exhibit high levels of nucleotide polymorphism compared to the derived alleles. In addition, we find several “null” alleles that have mutations on the derived Dox background, which result in loss of drive function. We discuss the possible causes of the maintenance of presence–absence polymorphism in the Winters sex-ratio genes.MEIOTIC drive can leave signatures in the genome similar to positive natural selection without increasing the fitness of an organism (Lyttle 1993). Drive elements are preferentially transmitted during meiosis by disrupting the development or function of sperm carrying the homologous chromosome (Zimmering et al. 1970, meiotic drive sensu lato), or by true chromosome segregation defects during meiosis (Sandler and Novitski 1957, meiotic drive sensu stricto; Tao et al. 2007a). While drive elements may arise on any chromosome, sex-linked drivers have higher population invasion probabilities than autosomal drivers and are more easily detected due to their impact on progeny sex ratios (Hurst and Pomiankowski 1991). To survive, a driver must maintain tight linkage with an insensitive target locus lest it drive against itself, a condition ensured by the lack of recombination between sex chromosomes (Charlesworth and Hartl 1978). Because of the impact drive elements have on sex ratios, sex-linked drivers are often referred to as “sex-ratio distorters” and the phenotype of skewed progeny sex ratios is termed “sex-ratio.” The mere transmission advantage of a driver, unless balanced by some detrimental fitness effect or masked by a suppressor, can cause it to sweep through a population in a manner similar to a positively selected mutation (Edwards 1961; Vaz and Carvalho 2004).Obviously, a complete sweep of a sex-linked driver dooms a male-less (or female-less) population to extinction (Hamilton 1967), and natural selection strongly favors genetic factors that suppress drive and restore Mendelian segregation. Fisher (1930) presented a qualitative argument for the maintenance of an equal sex ratio, which predicts selection on any heritable variant that increases the production of the rarer sex. Fisher''s principle has been formalized mathematically and demonstrated empirically (e.g., Bodmer and Edwards 1960; Carvalho et al. 1998). Suppressors have been identified in a wide variety of meiotic drive systems and are predicted to be strongly favored by natural selection for the maintenance of equal sex ratios (reviewed by Jaenike 2001). Furthermore, the evolution of linked enhancer genes may enable drivers to evade suppression, setting off another bout of Fisherian selection for equal sex ratios (Hartl 1975).Meiotic drive is widespread, with systems identified in mammals, insects, and plants (Jaenike 2001). Drosophila is the most extensively studied insect taxon, and sex-chromosome meiotic drive systems have been identified in more than a dozen species (Jaenike 2001). Cryptic (i.e., suppressed) distorters may be identified when the association between driver and suppressor is lost, such as in hybrids between species or populations that do not share meiotic drive systems (Mercot et al. 1995). The coevolutionary arms race between drivers and suppressors likely contributes to Haldane''s rule (the preferential sterility or inviability of heterogametic hybrids) and is a leading explanation for the importance of X-linked loci in causing hybrid male sterility (Frank 1991; Hurst and Pomiankowski 1991; Tao et al. 2007b; Presgraves 2008). Indeed, two recently characterized hybrid male sterility factors are also sex-ratio distorters—direct evidence of a link between meiotic drive and speciation (Tao et al. 2001; Orr and Irving 2005; Phadnis and Orr 2009).The three X-linked drive systems of Drosophila simulans are genetically distinct and have been termed Paris, Durham, and Winters (Tao et al. 2007a). Here, we focus on the Winters sex-ratio (SR), whose driver and suppressor have been mapped to the gene level and whose molecular and cellular features have been elucidated (Tao et al. 2007a,b). Distortion requires two genes, Distorter on the X (Dox) and Mother of Dox (MDox); Dox is a duplicate copy of MDox (Tao et al. 2007a; Y. Tao, personal communication). The dominant suppressor, Not Much Yang (Nmy), is a retrotransposed copy of Dox on chromosome 3R (Tao et al. 2007b). Nmy likely suppresses Dox through an RNA interference mechanism by forming a double stranded RNA with homology to the distorter RNAs (Tao et al. 2007b). The genes of the Winters sex-ratio are not found in D. melanogaster, which diverged from D. simulans ∼2.3 million years ago (Li et al. 1999). Initial surveys of the genes in the simulans clade indicate that a functional Nmy gene is present in D. mauritiana (Tao et al. 2007b). Thus, the Winters genes are >250,000 years old, the speciation time of D. simulans, D. mauritiana, and D. sechellia (McDermott and Kliman 2008).Signatures of positive selection have been previously detected at genomic regions linked to Drosophila sex-ratio distorters. However, this study represents the first evidence of selection acting directly on a sex-ratio distorter gene and its suppressor gene. In D. recens, driving X chromosomes show reduced nucleotide and haplotype variability relative to standard (nondriving) X chromosomes, and linkage disequilibrium extends over 130 cM of the driving chromosome (Dyer et al. 2007). The Paris driver has been localized to a pair of duplicated loci 150 kb apart; recent work shows reduced haplotype diversity and linkage disequilibrium between variants associated with drive (Derome et al. 2008). In this study, we characterize patterns of genetic variation in natural populations of North American D. simulans and find signatures of recent and strong positive selection at all three genes of the Winters sex-ratio.  相似文献   
29.
Inka cells of insect epitracheal glands (EGs) secrete preecdysis and ecdysis-triggering hormones (PETH and ETH) at the end of each developmental stage. Both peptides act in the central nervous system to evoke the ecdysis behavioral sequence, a stereotype behavior during which old cuticle is shed. Secretion of ETH is stimulated by a brain neuropeptide, eclosion hormone (EH). EH evokes accumulation of cGMP followed by release of ETH from Inka cells, and exogenous cGMP evokes secretion of ETH. The secretory responses to EH and cGMP are inhibited by the broad-spectrum kinase inhibitor staurosporine, and the response to EH is potentiated by the phosphatase inhibitor calyculin A. Staurosporine did not inhibit EH-evoked accumulation of cGMP. Changes in cytoplasmic Ca2+ in Inka cells during EH signaling were monitored via fluorescence ratioing with fura-2-loaded EGs. Cytoplasmic Ca2+ increases within 30-120 s after addition of EH to EGs, and it remains elevated for at least 10 min, corresponding with the time course of secretion. Secretion is increased in dose-dependent manner by the Ca2+-ATPase inhibitor thapsigargin, a treatment that does not elevate glandular cGMP above basal levels. The secretory response to EH is partially inhibited in glands loaded with EGTA, while cGMP levels are unaffected. These findings suggest that EH activates second messenger cascades leading to cGMP accumulation and Ca2+ mobilization and/or influx and that both pathways are required for a full secretory response. cGMP activates a staurosporine-inhibitable protein kinase. We propose that Ca2+ acts via a parallel cascade with a time course that is similar to that for cGMP activation of a cGMP-dependent protein kinase.  相似文献   
30.
Arg(82) is one of the four buried charged residues in the retinal binding pocket of bacteriorhodopsin (bR). Previous studies show that Arg(82) controls the pK(a)s of Asp(85) and the proton release group and is essential for fast light-induced proton release. To further investigate the role of Arg(82) in light-induced proton pumping, we replaced Arg(82) with histidine and studied the resulting pigment and its photochemical properties. The main pK(a) of the purple-to-blue transition (pK(a) of Asp(85)) is unusually low in R82H: 1.0 versus 2.6 in wild type (WT). At pH 3, the pigment is purple and shows light and dark adaptation, but almost no light-induced Schiff base deprotonation (formation of the M intermediate) is observed. As the pH is increased from 3 to 7 the M yield increases with pK(a) 4.5 to a value approximately 40% of that in the WT. A transition with a similar pK(a) is observed in the pH dependence of the rate constant of dark adaptation, k(da). These data can be explained, assuming that some group deprotonates with pK(a) 4.5, causing an increase in the pK(a) of Asp(85) and thus affecting k(da) and the yield of M. As the pH is increased from 7 to 10.5 there is a further 2.5-fold increase in the yield of M and a decrease in its rise time from 200 &mgr;s to 75 &mgr;s with pK(a) 9. 4. The chromophore absorption band undergoes a 4-nm red shift with a similar pK(a). We assume that at high pH, the proton release group deprotonates in the unphotolyzed pigment, causing a transformation of the pigment into a red-shifted "alkaline" form which has a faster rate of light-induced Schiff base deprotonation. The pH dependence of proton release shows that coupling between Asp(85) and the proton release group is weakened in R82H. The pK(a) of the proton release group in M is 7.2 (versus 5.8 in the WT). At pH < 7, most of the proton release occurs during O --> bR transition with tau approximately 45 ms. This transition is slowed in R82H, indicating that Arg(82) is important for the proton transfer from Asp(85) to the proton release group. A model describing the interaction of Asp(85) with two ionizable residues is proposed to describe the pH dependence of light-induced Schiff base deprotonation and proton release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号