首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   13篇
  310篇
  2023年   4篇
  2022年   6篇
  2021年   12篇
  2020年   8篇
  2019年   12篇
  2018年   17篇
  2017年   12篇
  2016年   21篇
  2015年   16篇
  2014年   23篇
  2013年   31篇
  2012年   34篇
  2011年   18篇
  2010年   14篇
  2009年   8篇
  2008年   9篇
  2007年   21篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1992年   1篇
  1991年   1篇
  1981年   1篇
排序方式: 共有310条查询结果,搜索用时 0 毫秒
51.
52.
The phenomenon of cross-resistance allows plants to acquire resistance to a broad range of stresses after previous exposure to one specific factor. Although this stress–response relationship has been known for decades, the sequence of events that underpin cross-resistance remains unknown. Our experiments revealed that susceptible potato (Solanum tuberosum L. cv. Bintje) undergoing aluminum (Al) stress at the root level showed enhanced defense responses correlated with reduced disease symptoms after leaf inoculation with Phytophthora infestans. The protection capacity of Al to subsequent stress was associated with the local accumulation of H2O2 in roots and systemic activation of salicylic acid (SA) and nitric oxide (NO) dependent pathways. The most crucial Al-mediated changes involved coding of NO message in an enhanced S-nitrosothiol formation in leaves tuned with an abundant SNOs accumulation in the main vein of leaves. Al-induced distal NO generation was correlated with the overexpression of PR-2 and PR-3 at both mRNA and protein activity levels. In turn, after contact with a pathogen we observed early up-regulation of SA-mediated defense genes, e.g. PR1, PR-2, PR-3 and PAL, and subsequent disease limitation. Taken together Al exposure induced distal changes in the biochemical stress imprint, facilitating more effective responses to a subsequent pathogen attack.  相似文献   
53.
The lipopolysaccharide (LPS) of the bacterium Pectobacterium atrosepticum SCRI 1039 was hydrolyzed and the products were separated. A study of the obtained O-polysaccharide by means of chemical methods, GLC, GLC–MS, and NMR spectroscopy allowed us to identify a branched polymer with a pentasaccharide repeating unit of the structure shown below, in which the fucose residue was partially O-acetylated at C-2, C-3 or C-4.  相似文献   
54.

Background

Myeloid-derived suppressor cells (MDSCs) function in immunosuppression and tumor development by induction of angiogenesis in a STAT3-dependent manner. Knowledge of MDSC biology is mainly limited to mice studies, and more clinical investigations using spontaneous tumor models are required. Here we performed in vitro experiments and clinical data analysis obtained from canine patients.

Methods

Using microarrays we examined changes in gene expression in canine mammary cancer cells due to their co-culture with MDSCs. Further, using Real-time rt-PCR, Western blot, IHC, siRNA, angiogenesis assay and migration/invasion tests we examined a role of the most important signaling pathway.

Results

In dogs with mammary cancer, the number of circulating MDSCs increases with tumor clinical stage. Microarray analysis revealed that MDSCs had significantly altered molecular pathways in tumor cells in vitro. Particularly important was the detected increased activation of IL-28/IL-28RA (IFN-λ) signaling. The highest expression of IL-28 was observed in stage III/IV mammary tumor-bearing dogs. IL-28 secreted by MDSCs stimulates STAT3 in tumor cells, which results in increased expression of angiogenic factors and subsequent induction of angiogenesis by endothelial cells, epithelial-mesenchymal transition (EMT) and increased migration of tumor cells in vitro. Knockdown of IL-28RA decreased angiogenesis, tumor cell invasion and migration.

Conclusions

We showed for the first time that MDSCs secrete IL-28 (IFN-λ), which promotes angiogenesis, EMT, invasion and migration of tumor cells. Thus, IL-28 may constitute an interesting target for further therapies. Moreover, the similarity in circulating MDSC levels at various tumor clinical stages between canine and human patients indicates canines as a good model for clinical trials of drugs targeting MDSCs.  相似文献   
55.
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.  相似文献   
56.
57.
We reinvestigated rearrangements occurring in region q13 of chromosome 11 aiming to: (i) describe heterogeneity of the observed structural alterations, (ii) estimate amplicon size and (iii) identify of oncogenes involved in laryngeal cancer progression as potential targets for therapy. The study included 17 cell lines derived from laryngeal cancers and 34 specimens from primary laryngeal tumors. The region 11q13 was analyzed by fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and gene expression microarray. Next, quantitative real time PCR was used for chosen genes to confirm results from aCGH and gene expression microarray. The observed pattern of aberrations allows to distinguish three ways, in which gain and amplification involving 11q13 region may occur: formation of a homogeneously staining region; breakpoints in/near 11q13, which lead to the three to sevenfold increase of the copy number of 11q13 region; the presence of additional copies of the whole chromosome 11. The minimal altered region of gain and/or amplification was limited to ~1.8 Mb (chr.11:69,395,184–71,209,568) and comprised mostly 11q13.3 band which contain 12 genes. Five, out of these genes (CCND1, ORAOV1, FADD, PPFIA1, CTTN) had higher expression levels in comparison to healthy controls. Apart from CCND1 gene, which has an established role in pathogenesis of head and neck cancers, CTTN, ORAOV1 and FADD genes appear to be oncogene-candidates in laryngeal cancers, while a function of PPFIA1 requires further studies.  相似文献   
58.
In this study, the seedlings of two wheat cultivars were used: drought-resistant Chinese Spring (CS) and drought-susceptible (SQ1). Seedlings were subjected to osmotic stress in order to assess the differences in response to drought stress between resistant and susceptible genotype. The aim of the experiment was to evaluate the changes in physiological and biochemical characteristics and to establish the optimum osmotic stress level in which differences in drought resistance between the genotypes could be revealed. Plants were subjected to osmotic stress by supplementing the root medium with three concentrations of PEG 6000. Seedlings were grown for 21 days in control conditions and then the plants were subjected to osmotic stress for 7 days by supplementing the root medium with three concentrations of PEG 6000 (D1, D2, D3) applied in two steps: during the first 3 days of treatment ?0.50, ?0.75 and ?1.00 and next ?0.75, ?1.25 and ?1.5 MPa, respectively. Measurements of gas exchange parameters, chlorophyll content, height of seedlings, length of root, leaf and root water content, leaf osmotic potential, lipid peroxidation, and contents of soluble carbohydrates and proline were taken. The results highlighted statistically significant differences in most traits for treatment D2 and emphasized that these conditions were optimum for expressing differences in the responses to osmotic stress between SQ1 and CS wheat genotypes. The level of osmotic stress defined in this study as most suitable for differentiating drought resistance of wheat genotypes will be used in further research for genetic characterization of this trait in wheat through QTL analysis of mapping population of doubled haploid lines derived from CS and SQ1.  相似文献   
59.
Salicylic acid and photosynthesis: signalling and effects   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is a well-known signalling molecule playing a role in local and systemic acquired resistance against pathogens as well as in acclimation to certain abiotic stressors. As a stress-related signalling compound, it may directly or indirectly affect various physiological processes, including photosynthesis. The effects of exogenously applied SA on plant physiological processes under optimal environmental conditions are controversial. Several studies suggest that SA may have a positive effect on germination or plant growth in various plant species. However, SA may also act as a stress factor, having a negative influence on various physiological processes. Its mode of action depends greatly on several factors, such as the plant species, the environmental conditions (light, temperature, etc.) and the concentration. Exogenous SA may also alleviate the damaging effects of various stress factors, and this protection may also be manifested as higher photosynthetic capacity. Unfavourable environmental conditions have also been shown to increase the endogenous SA level in plants. Recent results strongly suggest that controlled SA levels are important in plants for optimal photosynthetic performance and for acclimation to changing environmental stimuli. The present review discusses the effects of exogenous and endogenous SA on the photosynthetic processes under optimal and stress conditions.  相似文献   
60.
The aim of two‐year‐long pot experiments was to investigate the influence of P. frequentans on the growth of over‐ground parts, the intensity of assimilation and transpiration of plants, as well as ths influence on the yield of potato bulbs. It was determined how the above fungus influenced the populaüon of G rostochiensis, the influence being characterized by the density change of cysts, eggs, and larvae in the soil. Experiments in vitro allowed to determine the wholesomeness of cysts, eggs, and larvae (J2) that were in direct contact with the mycelium ofP. frequentans.

It was stated that presence of P. frequentans intensified the development of plants and relevantly stimulated their growth, especially in the initial vegetation phase, as compared with the remaining combinations (Fig. 1). Positive effect of P. frequentans on the growth of potato yield was proved, in comparison with the control, and by co‐occurrence of the fungus with G. rostochiensis, also in comparison to the combination with nematodes only (Fig. 2).

Pot experiments confirmed the antagonistic effect of P. frequentans on the population of G. rostochiensis. Presence of P. frequentans in the ground caused namely a relevant diminution of density of cysts, eggs and larvae (Tab. II), as well as morphological changes by females, which was connected with size reduction of the cysts (Tab. III). Experiments in vitro confirmed the destructive effect of P. frequentans on the cysts of G. rostochiensis (Tab. IV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号