首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   28篇
  国内免费   1篇
  2023年   4篇
  2022年   10篇
  2021年   13篇
  2020年   5篇
  2019年   6篇
  2018年   12篇
  2017年   9篇
  2016年   13篇
  2015年   20篇
  2014年   21篇
  2013年   33篇
  2012年   32篇
  2011年   28篇
  2010年   19篇
  2009年   26篇
  2008年   32篇
  2007年   31篇
  2006年   30篇
  2005年   27篇
  2004年   35篇
  2003年   18篇
  2002年   16篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
排序方式: 共有493条查询结果,搜索用时 15 毫秒
71.
Id-1 is a member of the HLH protein family that regulates a wide range of cellular processes such as cell proliferation, apoptosis, senescence and overexpression of Id-1 was recently suggested to play roles in the development and progression of different cancers. Previously, Id-1 was shown to physically interact with the viral protein E1A. Meanwhile, Id-1 expression was found to be regulated by several of the virus-encoded proteins, suggesting that Id-1 may be a common cellular target of the viral proteins. Here, we report that Id-1 interacts with the Hepatitis-B virus (HBV)-encoded protein HBX and regulates its stability in hepatocellular carcinoma (HCC) cells. We found that in HCC cells, ectopic Id-1 expression significantly decreased the half-life of the HBX protein, indicating that HBX is destabilized by Id-1. Meanwhile, the Id-1-induced HBX degradation was found to be inhibited by treatment with proteasome inhibitor, suggesting that this process is mediated through the proteasome pathway. Interestingly, while Id-1 did not induce HBX-ubiquitination, we found that removal of all the lysine residues of the HBX protein protects it from the effect of Id-1, indicating that ubiquitination is still required for the Id-1-mediated HBX degradation. Meanwhile, we found that Id-1 binds to the proteasome subunit C8 and facilitates its interaction with the HBX protein and disruption of this interaction completely abolishes the negative effect of Id-1 on HBX protein stability. Taken together, our results demonstrated a novel function of Id-1 in regulating HBX protein stability through interaction with the proteasome.  相似文献   
72.
Copper is an essential trace element that may serve as a signaling molecule in the nervous system. Here we show that extracellular Cu2+ is a potent inhibitor of BK and Shaker K+ channels. At low micromolar concentrations, Cu2+ rapidly and reversibly reduces macrosocopic K+ conductance (G(K)) evoked from mSlo1 BK channels by membrane depolarization. GK is reduced in a dose-dependent manner with an IC50 and Hill coefficient of 2 microM and 1.0, respectively. Saturating 100 microM Cu2+ shifts the GK-V relation by +74 mV and reduces G(Kmax) by 27% without affecting single channel conductance. However, 100 microM Cu2+ fails to inhibit GK when applied during membrane depolarization, suggesting that Cu2+ interacts poorly with the activated channel. Of other transition metal ions tested, only Zn2+ and Cd2+ had significant effects at 100 microM with IC(50)s > 0.5 mM, suggesting the binding site is Cu2+ selective. Mutation of external Cys or His residues did not alter Cu2+ sensitivity. However, four putative Cu2+-coordinating residues were identified (D133, Q151, D153, and R207) in transmembrane segments S1, S2, and S4 of the mSlo1 voltage sensor, based on the ability of substitutions at these positions to alter Cu2+ and/or Cd2+ sensitivity. Consistent with the presence of acidic residues in the binding site, Cu2+ sensitivity was reduced at low extracellular pH. The three charged positions in S1, S2, and S4 are highly conserved among voltage-gated channels and could play a general role in metal sensitivity. We demonstrate that Shaker, like mSlo1, is much more sensitive to Cu2+ than Zn2+ and that sensitivity to these metals is altered by mutating the conserved positions in S1 or S4 or reducing pH. Our results suggest that the voltage sensor forms a state- and pH-dependent, metal-selective binding pocket that may be occupied by Cu2+ at physiologically relevant concentrations to inhibit activation of BK and other channels.  相似文献   
73.
TRAF6 (tumor necrosis factor-associated factor 6) is an essential adaptor downstream from the tumor necrosis factor (TNF) receptor and Toll-like receptor superfamily members. This molecule is critical for dendritic cell maturation and T cell homeostasis. Here we show that TRAF6 is important in high affinity IgE receptor, FcepsilonRI-mediated mast cell activation. In contrast to dendritic cells and T cells, TRAF6-deficient mast cells matured normally and showed normal IgE-dependent degranulation. Importantly, TRAF6-deficient mast cells showed impaired production of cytokine interleukin-6, CCL-9, interleukin-13, and TNF following FcepsilonRI aggregation. Chromatin immunoprecipitation assay showed decreased NF-kappaB p65 binding to CCL-9 and TNF promoters in TRAF6-deficient mast cells. Antigen and IgE-induced IkappaB phosphorylation and NF-kappaB p65 translocation to the nucleus were diminished in TRAF6-deficient mast cells. NF-kappaB luciferase activity in response to antigen and IgE stimulation was severely impaired in TRAF6-deficient mast cells. In addition, antigen and IgE-induced phosphorylation of mitogen-activated protein kinase p38 and JNK, but not ERK1/2, was significantly reduced in TRAF6-deficient mast cells. These results identified TRAF6 as an important signal transducer in FcepsilonRI-mediated signaling in mast cells. Our findings implicate TRAF6 as a new adaptor/regulator molecule for allergen-mediated inflammation in allergy.  相似文献   
74.
Although cells can exit mitotic block aberrantly by mitotic slippage, they are prevented from becoming tetraploids by a p53-dependent postmitotic checkpoint. Intriguingly, disruption of the spindle-assembly checkpoint also compromises the postmitotic checkpoint. The precise mechanism of the interplay between these two pivotal checkpoints is not known. We found that after prolonged nocodazole exposure, the postmitotic checkpoint was facilitated by p53. We demonstrated that although disruption of the mitotic block by a MAD2-binding protein promoted slippage, it did not influence the activation of p53. Both p53 and its downstream target p21(CIP1/WAF1) were activated at the same rate irrespective of whether the spindle-assembly checkpoint was enforced or not. The accelerated S phase entry, as reflected by the premature accumulation of cyclin E relative to the activation of p21(CIP1/WAF1), is the reason for the uncoupling of the postmitotic checkpoint. In support of this hypothesis, forced premature mitotic exit with a specific CDK1 inhibitor triggered DNA replication without affecting the kinetics of p53 activation. Finally, replication after checkpoint bypass was boosted by elevating the level of cyclin E. These observations indicate that disruption of the spindle-assembly checkpoint does not directly influence p53 activation, but the shortening of the mitotic arrest allows cyclin E-CDK2 to be activated before the accumulation of p21(CIP1/WAF1). These data underscore the critical relationship between the spindle-assembly checkpoint and the postmitotic checkpoint in safeguarding chromosomal stability.  相似文献   
75.
Opioids introduced at reperfusion (R) following ischemia (I) reduce infarct size much like postconditioning, suggesting the hypothesis that postconditioning increases cardiac opioids and activates local opioid receptors. Anesthetized male rats subjected to 30 min regional I and 3 h R were postconditioned with three cycles of 10 s R and 10 s reocclusion at onset of R. Naloxone (NL), its peripherally restricted analog naloxone methiodide, delta-opioid receptor (DOR) antagonist naltrindole (NTI), kappa-opioid receptor antagonist norbinaltorphimine (NorBNI), and mu-opioid receptor (MOR) antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) were administered intravenously 5 min before R. The area at risk (AAR) was comparable among groups, and postconditioning reduced infarct size from 57 +/- 2 to 42 +/- 2% (P < 0.05). None of the antagonists alone altered infarct size. All antagonists abrogated postconditioning protection at higher doses. However, blockade of infarct sparing by postconditioning was lost, since tested doses of NL, NTI, NorBNI, and CTAP were lowered. The efficacy of NorBNI declined first at 3.4 micromol/kg, followed sequentially by NTI (1.1), NL (0.37), and CTAP (0.09), suggesting likely MOR and perhaps DOR participation. Representative small, intermediate, and large enkephalins in the AAR were quantified (fmol/mg protein; mean +/- SE). I/R reduced proenkephalin (58 +/- 9 vs. 33 +/- 4; P < 0.05) and sum total of measured enkephalins, including proenkephalin, peptide B, methionine-enkephalin, and methionine-enkephalin-arginine-phenylalanine (139 +/- 17 vs. 104 +/- 7; P < 0.05) compared with shams. Postconditioning increased total enkephalins (89 +/- 8 vs. 135 +/- 5; P < 0.05) largely by increasing proenkephalin (33 +/- 4 vs. 96 +/- 7; P < 0.05). Thus the infarct-sparing effect of postconditioning appeared to involve endogenously activated MORs and possibly DORs, and preservation of enkephalin precursor synthesis in the AAR.  相似文献   
76.
Emerging and re-emerging infections such as SARS (2003) and pandemic H1N1 (2009) have caused concern for public health researchers and policy makers due to the increased burden of these diseases on health care systems. This concern has prompted the use of mathematical models to evaluate strategies to control disease spread, making these models invaluable tools to identify optimal intervention strategies. A particularly important quantity in infectious disease epidemiology is the basic reproduction number, R0. Estimation of this quantity is crucial for effective control responses in the early phase of an epidemic. In our previous study, an approach for estimating the basic reproduction number in real time was developed. This approach uses case notification data and the structure of potential transmission contacts to accurately estimate R0 from the limited amount of information available at the early stage of an outbreak. Based on this approach, we extend the existing methodology; the most recent method features intra- and inter-age groups contact heterogeneity. Given the number of newly reported cases at the early stage of the outbreak, with parsimony assumptions on removal distribution and infectivity profile of the diseases, experiments to estimate real time R0 under different levels of intra- and inter-group contact heterogeneity using two age groups are presented. We show that the new method converges more quickly to the actual value of R0 than the previous one, in particular when there is high-level intra-group and inter-group contact heterogeneity. With the age specific contact patterns, number of newly reported cases, removal distribution, and information about the natural history of the 2009 pandemic influenza in Hong Kong, we also use the extended model to estimate R0 and age-specific R0.  相似文献   
77.
The recent development of third generation sequencing (TGS) generates much longer reads than second generation sequencing (SGS) and thus provides a chance to solve problems that are difficult to study through SGS alone. However, higher raw read error rates are an intrinsic drawback in most TGS technologies. Here we present a computational method, LSC, to perform error correction of TGS long reads (LR) by SGS short reads (SR). Aiming to reduce the error rate in homopolymer runs in the main TGS platform, the PacBio® RS, LSC applies a homopolymer compression (HC) transformation strategy to increase the sensitivity of SR-LR alignment without scarifying alignment accuracy. We applied LSC to 100,000 PacBio long reads from human brain cerebellum RNA-seq data and 64 million single-end 75 bp reads from human brain RNA-seq data. The results show LSC can correct PacBio long reads to reduce the error rate by more than 3 folds. The improved accuracy greatly benefits many downstream analyses, such as directional gene isoform detection in RNA-seq study. Compared with another hybrid correction tool, LSC can achieve over double the sensitivity and similar specificity.  相似文献   
78.
Dichloroacetophenone is a pyruvate dehydrogenase kinase 1 (PDK1) inhibitor with suboptimal kinase selectivity. Herein, we report the synthesis and biological evaluation of a series of novel dichloroacetophenones. Structure-activity relationship analyses (SARs) enabled us to identify three potent compounds, namely 54, 55, and 64, which inhibited PDK1 function, activated pyruvate dehydrogenase complex, and reduced the proliferation of NCI-H1975 cells. Mitochondrial bioenergetics assay suggested that 54, 55, and 64 enhanced the oxidative phosphorylation in cancer cells, which might contribute to the observed anti-proliferation effects. Collectively, these results suggested that 54, 55, and 64 could be promising compounds for the development of potent PDK1 inhibitors.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号