首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11179篇
  免费   701篇
  国内免费   6篇
  2022年   40篇
  2021年   135篇
  2020年   87篇
  2019年   94篇
  2018年   156篇
  2017年   122篇
  2016年   205篇
  2015年   315篇
  2014年   388篇
  2013年   726篇
  2012年   618篇
  2011年   625篇
  2010年   407篇
  2009年   402篇
  2008年   677篇
  2007年   675篇
  2006年   603篇
  2005年   629篇
  2004年   651篇
  2003年   576篇
  2002年   519篇
  2001年   258篇
  2000年   251篇
  1999年   214篇
  1998年   138篇
  1997年   129篇
  1996年   101篇
  1995年   99篇
  1994年   108篇
  1993年   77篇
  1992年   159篇
  1991年   132篇
  1990年   148篇
  1989年   151篇
  1988年   124篇
  1987年   91篇
  1986年   96篇
  1985年   113篇
  1984年   98篇
  1983年   72篇
  1982年   66篇
  1981年   74篇
  1980年   50篇
  1979年   66篇
  1978年   43篇
  1977年   44篇
  1976年   39篇
  1975年   40篇
  1974年   38篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
971.
Cancer stem cells (CSCs) have several distinctive characteristics, including high metastatic potential, tumor-initiating potential, and properties that resemble normal stem cells such as self-renewal, differentiation, and drug efflux. Because of these characteristics, CSC is regarded to be responsible for cancer progression and patient prognosis. In our previous study, we showed that a ubiquitin E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) suppressed breast cancer malignancy. Moreover, a recent clinical study reported that CHIP expression levels were associated with favorable prognostic parameters of patients with breast cancer. Here we show that CHIP suppresses CSC properties in a population of breast cancer cells. CHIP depletion resulted in an increased proportion of CSCs among breast cancers when using several assays to assess CSC properties. From our results, we propose that inhibition of CSC properties may be one of the functions of CHIP as a suppressor of cancer progression.  相似文献   
972.
To characterize the luminescence properties of nanoKAZ, a 16 amino acid substituted mutant of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase, the effects of each mutated amino acid were investigated by site-specific mutagenesis. All 16 single substituted KAZ mutants were expressed in Escherichia coli cells and their secretory expressions in CHO-K1 cells were also examined using the signal peptide sequence of Gaussia luciferase. Luminescence activity of KAZ was significantly enhanced by single amino acid substitutions at V44I, A54I, or Y138I. Further, the triple mutant KAZ-V44I/A54I/Y138I, named eKAZ, was prepared and these substitutions synergistically enhanced luminescence activity, showing 66-fold higher activity than wild-KAZ and also 7-fold higher activity than nanoKAZ using coelenterazine as a substrate. Substrate specificity of eKAZ for C2- and/or C6-modified coelenterazine analogues was different from that of nanoKAZ, indicating that three amino acid substitutions may be responsible for the substrate recognition of coelenterazine to increase luminescence activity. In contrast, these substitutions did not stimulate protein secretion from CHO-K1 cells, suggesting that the folded-protein structure of KAZ might be different from that of nanoKAZ.  相似文献   
973.
It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo.  相似文献   
974.
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer''s and Parkinson''s diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol‐7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α‐synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.  相似文献   
975.
Effects of nitrite inhibition on anaerobic ammonium oxidation   总被引:6,自引:0,他引:6  
In order to assess the stability of nitrogen removal systems utilizing anaerobic ammonium oxidation (anammox), it is necessary to study the toxic effects of nitrite on these biochemical reactions. In this study, the effects of nitrite on anammox bacteria entrapped in gel carriers were investigated using batch and continuous feeding tests. The results showed that the nitrite concentration in a reactor must be less than 274-mg N/L in order to prevent a decrease in the anammox activity, which occurred when the gel carriers were soaked in nitrite solutions with concentrations greater than 274-mg N/L in a batch test. In a continuous feeding test, nitrite inhibition was not observed at low concentrations of nitrite. However, the anammox activity decreased to 10% when the nitrite concentration increased to 750-mg N/L over a 7-day period in the reactor. In addition, it was shown that the effects of nitrogen on the anammox reaction were reversible because the anammox activity completely recovered within 3 days when the influent nitrite concentration was decreased to less than 274-mg N/L.  相似文献   
976.
Periodontal ligament (PDL) is a specialized connective tissue that influences the lifespan of the tooth. Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine, but little is known about the effects of TGF-β1 on PDL cells. Our aim has been to demonstrate the expression of TGF-β1 in rat PDL tissues and to evaluate its effects on the proliferation and gene expression in human PDL cells (HPLCs) and a human PDL stem/progenitor cell line, line 1-11, that we have recently developed. The expression of TGF-β1 in the entire PDL tissue was confirmed immunohistochemically, and both HPLCs and cell line 1-11 expressed mRNA from the TGF-β1, TGF-β type I receptor, and TGF-β type II receptor genes. Although exogenous TGF-β1 stimulated the proliferation of HPLCs, it did not upregulate the expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col I), or fibrillin-1 (FBN1) mRNA or of α-SMA protein in HPLCs, whereas expression for these genes was attenuated by an anti-TGF-β1 neutralizing antibody. In contrast, exogenous TGF-β1 reduced the proliferation of cell line 1-11, although it upregulated the expression of α-SMA, Col I, and FBN1 mRNA and of α-SMA protein in this cell line. In addition, interleukin-1 beta stimulation significantly reduced the expression of TGF-β1 mRNA and protein in HPLCs. Thus, TGF-β1 seems to play an important role in inducing fibroblastic differentiation of PDL stem/progenitor cells and in maintaining the PDL apparatus under physiological conditions.  相似文献   
977.
978.
The double disruptant of the S. cerevisiae protein phosphatase (PPase) genes, PTP2 (phosphotyrosine-specific PPase) and MSG5 (phosphotyrosine and phosphothreonine/serine-PPase) causes calcium-sensitive growth (Cas). Previous study using Fluorescent-activated cell sorting (FACS) analysis showed that this growth defect with calcium occurs at G1–S transition in the cell cycle. We discovered that six non-essential protein kinase (PKase) disruptions (Δbck1, Δmkk1, Δslt2/Δmpk1, Δmck1, Δssk2 and Δyak1) suppressed the Cas-phenotype of the Δptp2 Δmsg5 double disruptant. Bck1p, Mkk1p and Slt2p are components of the mitogen-activated protein kinase (MAPK) cascade of cell wall integrity pathway (Slt2 pathway), and Mck1p is its down regulator. Ssk2p is the MAPK kinase kinase of the high-osmolarity glycerol (HOG) pathway, while Yak1p is a negative regulator for the cAMP-dependent PKA pathway. FACS analysis revealed that only the disruption of Δssk2 and Δyak1 but not Δbck1, Δmkk1, Δslt2 and Δmck1 was able to suppress the delayed G1–S transition, suggesting that suppression of the growth defect is not always accompanied by suppression of the G1–S transition delay. The discovery of these PKases as suppressors revealed that in addition to the previously anticipated Slt2 pathway, HOG, Yak1p and Mck1p regulatory pathways may also be involved in the calcium sensitivity of the Δptp2 Δmsg5 double disruptant.  相似文献   
979.
To assess sympathetic variability in chronic heart failure (CHF), we evaluated a distribution of inter-spike intervals (ISIs) in renal sympathetic nerve activity (RSNA) in salt-sensitive hypertension-induced CHF (DSSH-CHF) rats. Dahl salt-sensitive rats were fed an 8% NaCl diet for 9 weeks to induce salt-sensitive hypertension-induced CHF. ISIs in RSNA were obtained from chronically instrumented conscious rats, and counts (frequency) and ranks of ISIs in RSNA were plotted with a histogram. We found that ISIs in RSNA followed a power-law distribution in rats, and the power-law distribution of ISIs for RSNA in DSSH-CHF rats was significantly different from that in normal rats. These results indicated that sympathetic variability may be significantly different between salt-sensitive hypertension-induced CHF and healthy individuals, which suggests that sympathetic variability may be used to predict abnormality of the sympathetic regulatory system.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号