首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   46篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   9篇
  2018年   9篇
  2017年   14篇
  2016年   23篇
  2015年   35篇
  2014年   33篇
  2013年   73篇
  2012年   57篇
  2011年   54篇
  2010年   39篇
  2009年   24篇
  2008年   53篇
  2007年   58篇
  2006年   60篇
  2005年   50篇
  2004年   55篇
  2003年   64篇
  2002年   49篇
  2001年   16篇
  2000年   16篇
  1999年   12篇
  1998年   11篇
  1997年   14篇
  1996年   10篇
  1995年   7篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   16篇
  1990年   17篇
  1989年   17篇
  1988年   10篇
  1987年   13篇
  1986年   13篇
  1985年   9篇
  1984年   9篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   8篇
  1979年   5篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
排序方式: 共有1079条查询结果,搜索用时 156 毫秒
151.
Metastin/kisspeptin, a 54-amino acid peptide, is the ligand of the G-protein-coupled receptor KISS1R which plays a key role in pathways that regulate reproduction and cell migration in many endocrine and gonadal tissues. The N-terminally truncated decapeptide, metastin(45–54), has 3–10 times higher receptor affinity and intracellular calcium ion-mobilizing activity but is rapidly inactivated in serum. In this study we designed and synthesized stable KISS1R agonistic decapeptide analogs with selected substitutions at positions 47, 50, and 51. Replacement of glycine with azaglycine (azaGly) in which the α-carbon is replaced with a nitrogen atom at position 51 improved the stability of amide bonds between Phe50-Gly51 and Gly51-Leu52 as determined by in vitro mouse serum stability studies. Substitution for tryptophan at position 47 with other amino acids such as serine, threonine, β-(3-pyridyl)alanine, and d-tryptophan (d-Trp), produced analogs that were highly stable in mouse serum. d-Trp47 analog 13 showed not only high metabolic stability but also excellent KISS1R agonistic activity. Other labile peptides may have increased serum stability using amino acid substitution.  相似文献   
152.
Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTG(exp)) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSA(LR) transgenic mouse model which expresses a pathogenic range CTG(exp). In the present study, we addressed the possibility that MBNL1 sequestration by CUG(exp) RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1(ΔE3/ΔE3) knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1(ΔE3/ΔE3) knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1(ΔE3/ΔE3) brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUG(exp) RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain.  相似文献   
153.
Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins.  相似文献   
154.
HLA-DRB1, especially the shared epitope (SE), is strongly associated with rheumatoid arthritis (RA). However, recent studies have shown that SE is at most weakly associated with RA without anti-citrullinated peptide/protein antibody (ACPA). We have recently reported that ACPA-negative RA is associated with specific HLA-DRB1 alleles and diplotypes. Here, we attempted to detect genetically different subsets of ACPA-negative RA by classifying ACPA-negative RA patients into two groups based on their positivity for rheumatoid factor (RF). HLA-DRB1 genotyping data for totally 954 ACPA-negative RA patients and 2,008 healthy individuals in two independent sets were used. HLA-DRB1 allele and diplotype frequencies were compared among the ACPA-negative RF-positive RA patients, ACPA-negative RF-negative RA patients, and controls in each set. Combined results were also analyzed. A similar analysis was performed in 685 ACPA-positive RA patients classified according to their RF positivity. As a result, HLA-DRB1*04:05 and *09:01 showed strong associations with ACPA-negative RF-positive RA in the combined analysis (p = 8.8×10−6 and 0.0011, OR: 1.57 (1.28–1.91) and 1.37 (1.13–1.65), respectively). We also found that HLA-DR14 and the HLA-DR8 homozygote were associated with ACPA-negative RF-negative RA (p = 0.00022 and 0.00013, OR: 1.52 (1.21–1.89) and 3.08 (1.68–5.64), respectively). These association tendencies were found in each set. On the contrary, we could not detect any significant differences between ACPA-positive RA subsets. As a conclusion, ACPA-negative RA includes two genetically distinct subsets according to RF positivity in Japan, which display different associations with HLA-DRB1. ACPA-negative RF-positive RA is strongly associated with HLA-DRB1*04:05 and *09:01. ACPA-negative RF-negative RA is associated with DR14 and the HLA-DR8 homozygote.  相似文献   
155.
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain.  相似文献   
156.
Paired Ig-like type 2 receptors (PILRs) are one of the paired receptor families, which consist of two functionally opposite members, inhibitory (PILRalpha) and activating (PILRbeta) receptors. PILRs are widely expressed in immune cells and recognize the sialylated O-glycosylated ligand CD99, which is expressed on activated T cells, to regulate immune responses. To date, their biophysical properties have not yet been examined. Here we report the affinity, kinetic, and thermodynamic analyses of PILR-CD99 interactions using surface plasmon resonance (SPR) together with site-directed mutagenesis. The SPR analysis clearly demonstrated that inhibitory PILRalpha can bind to CD99 with low affinity (K(d) approximately 2.2 microm), but activating PILRbeta binds with approximately 40 times lower affinity (K(d) approximately 85 microm). In addition to our previous mutagenesis study (Wang, J., Shiratori, I., Saito, T., Lanier, L. L., and Arase, H. (2008) J. Immunol. 180, 1686-1693), the SPR analysis showed that PILRalpha can bind to each Ala mutant of the two CD99 O-glycosylated sites (Thr-45 and Thr-50) with similar binding affinity to wild-type CD99. This indicated that both residues act as independent and equivalent PILRalpha binding sites, consistent with the highly flexible structure of CD99. On the other hand, it is further confirmed that PILRbeta can bind the T50A mutant, but not the T45A mutant, indicating a recognition difference between PILRalpha and PILRbeta. Kinetic studies demonstrated that the PILR-CD99 interactions show fast dissociation rates, typical of cell-cell recognition receptors. Thermodynamic analyses revealed that the PILRalpha-CD99 interaction is enthalpically driven with a large entropy loss (-TDeltaS = 8.9 kcal.mol(-1)), suggesting the reduction of flexibility upon complex formation. This is in contrast to the entropically driven binding of selectins to sugar-modified ligands involved in leukocyte rolling and infiltration, which may reflect their functional differences.  相似文献   
157.
Maternal virus infection or maternal polyinosinic-polycytidilic acid injection confers behavioral alterations including deficit in prepulse inhibition on the offspring. We previously found delayed myelination specifically in the early postnatal hippocampus in the polyinosinic–polycytidilic acid-injection model. To test whether the transient delay in myelination in the juvenile hippocampus leads to abnormal behaviors after adolescence, we injected lysophosphatidylcholine, a potent demyelinating agent, into the ventral hippocampus of the 10-day-old rat. The lysophosphatidylcholine treatment yielded hypomyelination at postnatal day 16, but myelination reverted to normal level in the adult rat. Neuronal arrays and morphology were not disturbed in this model. We then performed a battery of behavioral tests on the lysophosphatidylcholine-treated and control PBS-injected rats. The lysophosphatidylcholine-treated rats showed deficit in prepulse inhibition, motor hyperactivity in response to methamphetamine and anxiety-related behaviors, all of which are typical behaviors observed in the maternal infection models. These findings suggest that the timing of myelination in the early postnatal hippocampus is crucial for the proper development of sensorimotor and emotional functions. The lysophosphatidylcholine-treated rat without a gross anatomical defect is useful as a model for psychotic disorders.  相似文献   
158.
We examined life history traits and spermathecal morphology of both sexual and thelytokous Schwiebea mite species to determine ecological and morphological attributes during the evolution of parthenogenesis in this lineage. We reconstructed a molecular phylogeny of eight Japanese species using the internal transcribed spacer 1 (ITS1) of the ribosomal DNA (rDNA) and compared the sex ratio, developmental period, and egg number (fecundity) of each species within a species group by rearing them in the laboratory. Habitat preference was also analyzed from both collection and literature data. The reconstructed molecular phylogeny suggested that parthenogenesis evolved independently multiple times in this lineage. There were three clusters in the tree, in each of which the idiosoma, leg, setae, and spermathecal morphology of females was similar or identical; this suggested that mites in the same cluster were sister species. There was no relationship between sexual mode and life history traits or habitat preference. These results suggest that sexual and asexual species use different microhabitats. Because S. similis (sexual), S. elongata (thelytokous), and S. estradai (thelytokous) were in the same cluster and spermathecae of the first two were similar while that of the last was distinctively reduced, we hypothesized that speciation occurred in this order and that spermathecae are reduced and eventually lost during the course of parthenogenetic evolution.  相似文献   
159.
Acid-sensing ion channel 2 (ASIC2) plays a role as a mechanorecptor and acid receptor in the peripheral and central nervous systems. However, several recent studies have suggested that ASIC2 is expressed in several organs, in addition to the nervous system. We have examined the expression and distribution of ASIC2 in rat ciliated cells (trachea and oviduct) and stereociliated cells (epididymis, Corti organ, and ampullary crest) by immunohistochemistry and transmission electron microscopy (TEM). Immunohistochemistry revealed that ASIC2 was expressed in both ciliated cells and stereociliated cells, but the localization differed between these cell types. In ciliated cells, ASIC2 was coexpressed with a cilial marker (acetylated tubulin). In stereociliated cells stained with a stereocilial marker (phalloidin), ASIC2 was observed in the cell body. Observation by TEM suggested that ASIC2 expression was present at the apical side of the cilial membrane in ciliated cells and at the apical side of the cell body in stereociliated cells. This study thus indicates that the proton receptor ASIC2 is expressed in both ciliated and stereociliated cells.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号