首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   30篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   10篇
  2016年   12篇
  2015年   15篇
  2014年   14篇
  2013年   35篇
  2012年   32篇
  2011年   31篇
  2010年   21篇
  2009年   18篇
  2008年   27篇
  2007年   41篇
  2006年   34篇
  2005年   33篇
  2004年   31篇
  2003年   43篇
  2002年   26篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   9篇
  1993年   8篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1950年   1篇
排序方式: 共有541条查询结果,搜索用时 234 毫秒
81.
Large-scale EST sequencing in rice   总被引:39,自引:1,他引:38  
Large-scale cDNA analysis provides several great advantages for genome investigations in rice. Isolated and partially characterized cDNA clones have contributed not only to the construction of an RFLP linkage map and physical maps of the chromosomes but also to investigations of the mechanisms of expression of various isozymes and family genes. The ultimate aim of our large-scale cDNA analysis is to catalogue all the expressed genes of this important cereal, including tissue-specific, developmental stage-specific, and stress-specific genes. As of August 1996, the Rice Genome Research Program (RGP) has isolated and partially sequenced more than 29000 cDNA clones from various tissues and calluses in rice (Nipponbare, a japonica variety). The sequence data were translated into amino acid sequences for the 3 possible reading frames, and the similarity of these amino acid sequences to known proteins registered in PIR were examined. About 25% of the clones had significant similarities to known proteins. Some of the hit clones showed library-specific distributions, indicating that the composition of the clones in each library reflects, to some extent, the regulation of gene expression specific to differentiation, growth condition, or environmental stress. To further characterize the cDNA clones, including unknown clones, nucleotide sequence similarities of 24728 clones were analyzed and the clones were classified into around 10000 independent groups, suggesting that around a half or one third of expressed genes in rice have already been captured. These results obtained from our large-scale cDNA analysis provide useful information related to gene expression and regulation in rice.  相似文献   
82.
83.
Testicular germ cell transplantation into the seminiferous tubules is at present the only way to induce spermatogenesis from a given source of spermatogonial stem cells. Here we show an alternative method that harnesses the self-organizing ability of testicular somatic cells. The testicular cells of embryonic or neonatal mice or rats and of newborn pigs were dissociated into single cells. Each of them reorganized into a tubular structure following implantation into the subcutis of immunodeficient mice. When mouse germline stem (GS) cells derived from spermatogonial stem cells and expanded in culture were intermingled with testicular cells of rodents, they were integrated in the reconstituted tubules and differentiated beyond meiosis into spermatids. Normal offspring were produced by the microinjection of those spermatids into oocytes. This method could be applicable to various mammalian species and useful for producing functional gametes from GS cells in a xenoectopic environment.  相似文献   
84.
We detected biosynthetic activity for aflatoxins G1 and G2 in cell extracts of Aspergillus parasiticus NIAH-26. We found that in the presence of NADPH, aflatoxins G1 and G2 were produced from O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin, respectively. No G-group aflatoxins were produced from aflatoxin B1, aflatoxin B2, 5-methoxysterigmatocystin, dimethoxysterigmatocystin, or sterigmatin, confirming that B-group aflatoxins are not the precursors of G-group aflatoxins and that G- and B-group aflatoxins are independently produced from the same substrates (O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin). In competition experiments in which the cell-free system was used, formation of aflatoxin G2 from dihydro-O-methylsterigmatocystin was suppressed when O-methylsterigmatocystin was added to the reaction mixture, whereas aflatoxin G1 was newly formed. This result indicates that the same enzymes can catalyze the formation of aflatoxins G1 and G2. Inhibition of G-group aflatoxin formation by methyrapone, SKF-525A, or imidazole indicated that a cytochrome P-450 monooxygenase may be involved in the formation of G-group aflatoxins. Both the microsome fraction and a cytosol protein with a native mass of 220 kDa were necessary for the formation of G-group aflatoxins. Due to instability of the microsome fraction, G-group aflatoxin formation was less stable than B-group aflatoxin formation. The ordA gene product, which may catalyze the formation of B-group aflatoxins, also may be required for G-group aflatoxin biosynthesis. We concluded that at least three reactions, catalyzed by the ordA gene product, an unstable microsome enzyme, and a 220-kDa cytosol protein, are involved in the enzymatic formation of G-group aflatoxins from either O-methylsterigmatocystin or dihydro-O-methylsterigmatocystin.  相似文献   
85.
In the aflatoxin biosynthetic pathway, 5′-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2′S,5′S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5′-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.  相似文献   
86.
To study the developmental origin of the pancreas we used DiI crystals to mark regions of the early chick endoderm: this allowed correlations to be established between specific endoderm sites and the positions of their descendants. Endodermal precursor cells for the stomach, pancreas and intestine were found to segregate immediately after completion of gastrulation. Transplantation experiments showed that region-specific endodermal fates are determined sequentially in the order stomach, intestine, and then pancreas. Non-pancreatic endoderm transplanted to the stomach region generated ectopic pancreas expressing both insulin and glucagon. These results imply that a pancreas-inducing signal is emitted from somitic mesoderm underlying the pre-pancreatic region, and this extends rostrally beyond the stomach endoderm region at the early somite stage. Transplantation experiments revealed that the endoderm responding to these pancreatic-inducing signals lies within the pre-pancreatic region and extends caudally beyond the region of the intestinal endoderm. The results indicate that pancreatic fate is determined in the area of overlap between these two regions.  相似文献   
87.
The killer cell lectin-like receptor G1, KLRG1, is a cell surface receptor expressed on subsets of natural killer (NK) cells and T cells. KLRG1 was recently found to recognize E-cadherin and thus inhibit immune responses by regulating the effector function and the developmental processes of NK and T cells. E-cadherin is expressed on epithelial cells and exhibits Ca2+-dependent homophilic interactions that contribute to cell-cell junctions. However, the mechanism underlying the molecular recognition of KLRG1 by E-cadherin remains unclear. Here, we report structural, binding, and functional analyses of this interaction using multiple methods. Surface plasmon resonance demonstrated that KLRG1 binds the E-cadherin N-terminal domains 1 and 2 with low affinity (Kd ∼7–12 μm), typical of cell-cell recognition receptors. NMR binding studies showed that only a limited N-terminal region of E-cadherin, comprising the homodimer interface, exhibited spectrum perturbation upon KLRG1 complex formation. It was confirmed by binding studies using a series of E-cadherin mutants. Furthermore, killing assays using KLRG1+NK cells and reporter cell assays demonstrated the functional significance of the N-terminal region of E-cadherin. These results suggest that KLRG1 recognizes the N-terminal homodimeric interface of domain 1 of E-cadherin and binds only the monomeric form of E-cadherin to inhibit the immune response. This raises the possibility that KLRG1 detects monomeric E-cadherin at exposed cell surfaces to control the activation threshold of NK and T cells.Natural killer (NK)3 cells play a critical role in the innate immune system because of their ability to kill other cells. For example, NK cells can kill virus-infected cells and tumor cells without presensitization to a specific antigen, and they produce various cytokines, including interferon-γ and tumor necrosis factor-α (1). NK cells are controlled by both inhibitory and activating receptors that are expressed on their surfaces (2). The killer cell Ig-like receptor, Ly49, CD94/NKG2, and paired Ig-like type 2 receptor families include both inhibitory and activating members and thus are designated as paired receptor families. On the other hand, some inhibitory receptors, including KLRG1 (killer cell lectin-like receptor G1), and activating receptors, such as NKG2D, also exist. The integration of the signals from these receptors determines the final functional outcome of NK cells.These inhibitory and activating receptors can also be divided into two structurally different groups, the Ig-like receptors and the C-type lectin-like receptors, based on the structural aspects of their extracellular regions. The Ig-like receptors include killer cell Ig-like receptors and the leukocyte Ig-like receptors, and the C-type lectin-like receptors include CD94/NKG2(KLRD/KLRC), Ly49(KLRA), NKG2D(KLRK), NKR-P1(KLRB), and KLRG1. Many of these immune receptors recognize major histocompatibility complex class I molecules or their relatives (24), but there are still many orphan receptors expressed on NK cells. KLRG1 was one such orphan receptor; however, E-cadherin was recently found to be a ligand of KLRG1 (5, 6). Although major histocompatibility complex-receptor interactions have been extensively examined, the molecular basis of non-major histocompatibility complex ligand-receptor recognition is poorly understood.KLRG1 is a type II membrane protein, with one C-type lectin domain in the extracellular region, one transmembrane region, and one immunoreceptor tyrosine-based inhibitory motif. KLRG1 is expressed on a subset of mature NK cells in spleen, lungs, and peripheral blood during normal development. KLRG1 expression is induced on the surface of NK cells during viral responses (7, 8). NK cells expressing KLRG1 produce low levels of interferon-γ and cytokines and have a slow in vivo turnover rate and low proliferative responsiveness to interleukin-15 (9). Furthermore, KLRG1 is recognized as a marker of some T cell subsets, as follows. KLRG1 defines a subset of T cells, short lived effector CD8 T cells (SLECs), which are mature effector cells that express high levels of KLRG1 and cannot be differentiated into long lived memory CD8 T cells. In addition, memory precursor effector cells express low levels of KLRG1 and harbor the potential to become long lived memory CD8 T cells (10). Since SLECs exhibit stronger effector function than memory precursor effector cells, it is potentially beneficial, in terms of preventing harmful excess cytotoxicity, that SLECs express KLRG1 at a higher level to inhibit the immune response. Taken together, the expression of KLRG1 during the viral response and normal development might confer the inhibition of effector function and the regulation of NK and T cell proliferation (9).E-cadherin plays a pivotal role in Ca2+-dependent cell-cell adhesion and also contributes to tissue organization and development (1114). E-cadherin is primarily expressed on epithelial cells, and its extracellular region consists of several domains that include cadherin motifs (15, 16). These domains mediate Ca2+-dependent homophilic interactions to facilitate cell adhesion. When E-cadherins form cis- or trans-homodimers, they utilize their N-terminal regions as an interface, which can dock with domain 1 of another E-cadherin to form strand exchange (17). Therefore, the N-terminal region plays important roles in homophilic binding and cell adhesion.KLRG1 recognizes E-cadherins (and other class I cadherins), which are widely expressed in tissues and form tight adhesive cell-cell junctions, and Ito et al. (5) demonstrated that E-cadherin binding by KLRG1 inhibits NK cytotoxicity. Further, Gründermann et al. (6) showed that the E-cadherin-KLRG1 interaction inhibits the antigen-induced proliferation and induction of the cytolytic activity of CD8 T cells. Therefore, it is plausible that E-cadherin recognition by KLRG1, expressed on the surfaces of NK cells and T cells, may raise their activation thresholds by transducing inhibitory signals. Such an inhibition would prevent the excess injury of normal cells, which might result in inflammatory autoimmune diseases. KLRG1 may also have an important role in monitoring and removing cancer cells that lose E-cadherin expression. A recent report demonstrated that N-terminal domains 1 and 2 of E-cadherin are critical for KLRG1 recognition (18); however, despite accumulating evidence supporting the functional importance of the E-cadherin-KLRG1 interaction, the molecular basis of this interaction is poorly understood. Here, we report that the N-terminal region of E-cadherin, comprising the dimer interface, is the binding site for KLRG1. This suggests that KLRG1 does not recognize the dimeric form of E-cadherin but rather recognizes the monomeric form, which is exposed on the cell surfaces of disrupted or infected cells. This may suppress excess immune responses.  相似文献   
88.
Mutants exhibiting resistance to the fungicide, carboxin, were isolated from Aspergillus oryzae, and the mutations in the three gene loci, which encode succinate dehydrogenase (SDH) B, C, and D subunits, were identified to be independently responsible for the resistance. A structural model of the SDH revealed the different mechanisms that confer carboxin-resistance in different mutations. The mutant AosdhB gene (AosdhB(cxr)) was further examined for possible use as a transformant selection marker. After transformation with AosdhB(cxr), carboxin-resistant colonies appeared within 4 days of culture, and all of the examined colonies carried the transgene. Insertion analyses revealed that the AosdhB(cxr) gene was integrated into AosdhB locus via homologous recombination at high efficiency. Furthermore, AosdhB(cxr) functioned as a successful selection marker in a transformation experiment in Aspergillus parasiticus, suggesting that this transformation system can be used for Aspergillus species.  相似文献   
89.
Asymmetry in the competition abilities between invasive and native consumers can potentially influence the colonization success by invasive species. We tested whether a subsidy of allochthonous prey enhanced an asymmetric competition between invasive bluegill (Lepomis macrochirus) and two native cyprinid fish, that is, stone moroko (Pseudorasbora parva) and tamoroko (Gnathopogon elongatus elongatus). A field experiment was conducted using enclosures wherein the strength of interspecific competition and the presence/absence of allochthonous prey were manipulated. The experiment revealed that allochthonous prey alleviated the limitation of fish growths caused by a severe competition for aquatic prey resources. However, the importance of allochthonous prey differed considerably between invasive bluegill and the two native cyprinids. Individual bluegills grew faster when the allochthonous prey was supplied, whereas no difference in growth was observed in the two cyprinids whether or not allochthonous prey was supplied. Interestingly, the importance of allochthonous prey on the total amount of bluegill growth varied depending on the numerical abundance of native cyprinid competitors, and this importance increased when the native cyprinids were abundant. These findings indicated that allochthonous prey provides an asymmetric growth benefit to invasive bluegills over the two native cyprinids by alleviating asymmetrically the competition strength in a Japanese pond, especially under the conditions of severe interspecific resource competition and a limitation in the utilization of in situ prey resources.  相似文献   
90.
The neurogenic gene Drosophilabig brain (bib) has a high sequence homology to aquaporin-4. However, its cellular functions in Drosophila neurogenesis have remained elusive. Here we investigated cell adhesion, and the ion and water permeability of Bib. The adhesive function was examined by a cell aggregation assay using L cells. Bib-transfected L cells formed aggregated clusters, while control-L cells remained as a single cell suspension. Ion permeation was not confirmed in L cells stably expressing Bib. When expressed in COS7 cells, Bib exhibited limited water permeability. This newly found cell adhesive function of Bib may be important for Drosophila neurogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号