首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2961篇
  免费   278篇
  2023年   10篇
  2022年   34篇
  2021年   60篇
  2020年   54篇
  2019年   51篇
  2018年   48篇
  2017年   53篇
  2016年   97篇
  2015年   153篇
  2014年   182篇
  2013年   182篇
  2012年   273篇
  2011年   271篇
  2010年   156篇
  2009年   138篇
  2008年   198篇
  2007年   219篇
  2006年   206篇
  2005年   166篇
  2004年   180篇
  2003年   153篇
  2002年   124篇
  2001年   16篇
  2000年   11篇
  1999年   29篇
  1998年   37篇
  1997年   17篇
  1996年   18篇
  1995年   18篇
  1994年   10篇
  1993年   11篇
  1992年   4篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
排序方式: 共有3239条查询结果,搜索用时 15 毫秒
121.
Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.  相似文献   
122.
cAMP has previously been shown to promote cell survival in a variety of cell types, but the downstream signaling pathway(s) of this antiapoptotic effect is unclear. Thus the role of cAMP signaling through PKA and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) in cAMP's antiapoptotic action was investigated in the present study. cAMP's protective effect against bile acid-, Fas ligand-, and TNF-alpha-induced apoptosis in rat hepatocytes was largely unaffected by the selective PKA inhibitor, Rp-8-(4-chlorophenylthio)-cAMP (Rp-cAMP). In contrast, a novel cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl (CPT-2-Me)-cAMP, which activated cAMP-GEFs in hepatocytes without activating PKA, protected hepatocytes against apoptosis induced by bile acids, Fas ligand, and TNF-alpha. The role of cAMP-GEF and PKA on activation of Akt, a kinase implicated in cAMP survival signaling, was investigated. Inhibition of PKA with RP-cAMP had no effect on cAMP-mediated Akt phosphorylation, whereas CPT-2-Me-cAMP, which did not activate PKA, induced phosphatidylinositol 3-kinase (PI3-kinase)-dependent activation of Akt. Pretreatment of hepatocytes with the PI3-kinase inhibitor, Ly-294002, prevented CPT-2-Me-cAMP's protective effect against bile acid and Fas ligand, but not TNF-alpha-mediated apoptosis. Glucagon, CPT-cAMP, and CPT-2-Me-cAMP all activated Rap 1, a downstream effector of cAMP-GEF. These results suggest that a PKA-independent cAMP/cAMP-GEF/Rap pathway exists in hepatocytes and that activation of cAMP-GEFs promotes Akt phosphorylation and hepatocyte survival. Thus a cAMP/cAMP-GEF/Rap/PI3-kinase/Akt signaling pathway may confer protection against bile acid- and Fas-induced apoptosis in hepatocytes.  相似文献   
123.
Kinetochores are the specialized protein structures that form on centromeric DNA and direct chromosome segregation. It is critical that all chromosomes assemble a single kinetochore every cell cycle. One hallmark of all eukaryotic kinetochores is CENP-A, an essential centromeric histone H3 (CenH3) variant. Overexpression of CENP-A causes mislocalization to euchromatin, which could lead to deleterious consequences because CENP-A overexpression is associated with colorectal cancer . Although CENP-A protein levels are important for genomic stability, little is known about the mechanisms of CenH3 regulation. Here, we show that the levels of the budding yeast CenH3, Cse4, are regulated by ubiquitin-proteasome-mediated proteolysis. Because mutation of all Cse4 lysine residues did not completely stabilize the protein, we isolated a dominant lethal mutant, CSE4-351, that was stable. The Cse4-351 protein localized to euchromatin, suggesting that proteolysis prevents CenH3 euchromatic localization. When wild-type Cse4 was fused to a degron signal, the soluble Cse4 protein was rapidly degraded, but the centromere bound Cse4 was stable, indicating that centromere localization protects Cse4 from degradation. Taken together, these data identify proteolysis as one mechanism that contributes to the restricted centromere localization of the yeast CenH3.  相似文献   
124.
125.
DNA arrays are valuable tools in molecular biology laboratories. Their rapid acceptance was aided by the release of plans for a pin-spotting microarrayer by researchers at Stanford. Inkjet microarraying is a flexible, complementary technique that allows the synthesis of arrays of any oligonucleotide sequences de novo. We describe here an open-source inkjet arrayer capable of rapidly producing sets of unique 9,800-feature arrays.  相似文献   
126.

Background  

When processing microarray data sets, we recently noticed that some gene names were being changed inadvertently to non-gene names.  相似文献   
127.
Trypanosoma brucei genes encoding putative fatty acid synthesis enzymes are homologous to those encoding type II enzymes found in bacteria and organelles such as chloroplasts and mitochondria. It was therefore not surprising that triclosan, an inhibitor of type II enoyl-acyl carrier protein (enoyl-ACP) reductase, killed both procyclic forms and bloodstream forms of T. brucei in culture with 50% effective concentrations (EC(50)s) of 10 and 13 microM, respectively. Triclosan also inhibited cell-free fatty acid synthesis, though much higher concentrations were required (EC(50)s of 100 to 200 microM). Unexpectedly, 100 microM triclosan did not affect the elongation of [(3)H]laurate (C(12:0)) to myristate (C(14:0)) in cultured bloodstream form parasites, suggesting that triclosan killing of trypanosomes may not be through specific inhibition of enoyl-ACP reductase but through some other mechanism. Interestingly, 100 microM triclosan did reduce the level of incorporation of [(3)H]myristate into glycosyl phosphatidylinositol species (GPIs). Furthermore, we found that triclosan inhibited fatty acid remodeling in a cell-free assay in the same concentration range required for killing T. brucei in culture. In addition, we found that a similar concentration of triclosan also inhibited the myristate exchange pathway, which resides in a distinct subcellular compartment. However, GPI myristoylation and myristate exchange are specific to the bloodstream form parasite, yet triclosan kills both the bloodstream and procyclic forms. Therefore, triclosan killing may be due to a nonspecific perturbation of subcellular membrane structure leading to dysfunction in sensitive membrane-resident biochemical pathways.  相似文献   
128.
Growth of high quality crystals is often the most difficult step in the determination of protein structures by X-ray diffraction. Automation can improve the success of this process both by reducing the amount of protein required for each screen and by relieving the tedium of setting up crystallization experiments by hand. We have been using an automated system for the design and execution of hanging drop crystallization experiments for the last two years. The system includes robots for the preparation of solutions, setup of hanging drops, and automated imaging, as well as a new software package (RoCKS) for managing all phases of the crystallization process. Here, we review the fundamentals of automated protein crystallization and present results from our comparisons of various approaches to screening.  相似文献   
129.
130.
BACKGROUND: To determine the presence of Helicobacter species in the liver biopsy specimens from children with various chronic liver diseases as data in adult literature suggests a possible role of these bacteria in their pathogenesis. MATERIALS AND METHODS: Paraffin sections of 61 liver biopsies of pediatric patients with miscellaneous diseases and autopsy liver tissue from 10 control subjects with no evidence of preexisting liver disease were examined for the presence of Helicobacter species by a genus-specific seminested polymerase chain reaction (PCR) assay. PCR-products of positive samples were further characterized by denaturing gradient gel electrophoresis (DGGE) and DNA-sequence analysis. Based on those results, a seminested PCR assay for H. ganmani was developed and applied to the samples. RESULTS: On analysis, 40/61 patient samples were positive in the genus-specific Helicobacter PCR and 4/10 from the control group. The nucleotide sequences of 16S rDNA fragments were 99-100% similar to mainly Helicobacter sp. 'liver' and H. ganmani. PCR-products similar to H. canis and H. bilis were also found. The 16S rDNAs of control specimens showed similarity to Helicobacter sp. 'liver'. In the H. ganmani-specific PCR analysis 19 patients, but none of the controls, were positive. CONCLUSIONS: Amplified Helicobacter 16S rDNAs were related to Helicobacter sp. 'liver' or H. ganmani in liver biopsy specimens of pediatric patients. The possible significance of Helicobacter species in pediatric liver diseases needs to be evaluated further in prospective studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号