首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3028篇
  免费   284篇
  3312篇
  2023年   13篇
  2022年   39篇
  2021年   60篇
  2020年   54篇
  2019年   52篇
  2018年   50篇
  2017年   53篇
  2016年   98篇
  2015年   154篇
  2014年   182篇
  2013年   185篇
  2012年   274篇
  2011年   271篇
  2010年   160篇
  2009年   138篇
  2008年   199篇
  2007年   224篇
  2006年   207篇
  2005年   169篇
  2004年   181篇
  2003年   153篇
  2002年   127篇
  2001年   16篇
  2000年   13篇
  1999年   31篇
  1998年   39篇
  1997年   19篇
  1996年   21篇
  1995年   22篇
  1994年   11篇
  1993年   15篇
  1992年   6篇
  1991年   10篇
  1990年   12篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有3312条查询结果,搜索用时 0 毫秒
31.
We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1) infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII) of DENV-1 envelope (E) protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.  相似文献   
32.
33.
Abstract Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.  相似文献   
34.
Down syndrome (DS) is the most prevalent chromosomal disorder, accounting for significant morbidity and mortality. Definitive diagnosis requires invasive amniocentesis, and current maternal serum-based testing requires a false-positive rate of about 5% to detect 85% of affected pregnancies. We have performed a comprehensive proteomic analysis to identify potential serum biomarkers to detect DS. First- and second-trimester maternal serum samples of DS and gestational age-matched controls were analyzed using multiple, complementary proteomic approaches, including fluorescence 2-dimensional gel electrophoresis (2D-DIGE), 2-dimensional liquid chromatography-chromatofocusing (2D-CF), multidimensional protein identification technology (MudPIT; LC/LC-MS/MS), and MALDI-TOF-MS peptide profiling. In total, 28 and 26 proteins were differentially present in first- and second-trimester samples, respectively. Of these, 19 were specific for the first trimester and 16 for the second trimester, and 10 were differentially present in both trimesters. Analysis of MALDI-TOF-MS peptide profiles with pattern-recognition software also discriminated between DS and controls in both trimesters, with an average recognition capability approaching 96%. A majority of the biomarkers identified are serum glycoproteins that may play a role in cellular differentiation and growth of fetus. Further characterization and quantification of these markers in a larger cohort of subjects may provide the basis for new tests for improved DS screening.  相似文献   
35.
36.
Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli-CASK-Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-alpha as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS-CASK-liprin-alpha complex recruits components of the synaptic release machinery to adhesive proteins of the active zone.  相似文献   
37.
E. coli Integration host factor (IHF) condenses the bacterial nucleoid by wrapping DNA. Previously, we showed that DNA flexibility compensates for structural characteristics of the four consensus recognition elements associated with specific binding (Aeling et al., J. Biol. Chem. 281, 39236–39248, 2006). If elements are missing, high-affinity binding occurs only if DNA deformation energy is low. In contrast, if all elements are present, net binding energy is unaffected by deformation energy. We tested two hypotheses for this observation: in complexes containing all elements, (1) stiff DNA sequences are less bent upon binding IHF than flexible ones; or (2) DNA sequences with differing flexibility have interactions with IHF that compensate for unfavorable deformation energy. Time-resolved Förster resonance energy transfer (FRET) shows that global topologies are indistinguishable for three complexes with oligonucleotides of different flexibility. However, pressure perturbation shows that the volume change upon binding is smaller with increasing flexibility. We interpret these results in the context of Record and coworker's model for IHF binding (J. Mol. Biol. 310, 379–401, 2001). We propose that the volume changes reflect differences in hydration that arise from structural variation at IHF–DNA interfaces while the resulting energetic compensation maintains the same net binding energy.  相似文献   
38.
39.
Neurofibromatosis type-1 (NF1) patients suffer from cutaneous and subcutaneous neurofibromas (CNF) and large plexiform neurofibromas (PNF). Whole gene deletions of the NF1 gene can cause a more severe phenotype compared to smaller intragenic changes. Two distinct groups of NF1 whole gene deletions are type-1 deletions and atypical deletions. Our aim was to assess volumes and averaged annual growth-rates of CNF and PNF in patients with NF1 whole gene deletions and to compare these with NF1 patients without large deletions of the NF1 gene.We retrospectively evaluated 140 whole-body MR examinations of 38 patients with NF1 whole gene deletions (type-1 group: n = 27/atypical group n = 11) and an age- and sex matched collective of 38 NF1-patients. Age-dependent subgroups were created (0–18 vs >18 years). Sixty-four patients received follow-up MRI examinations (NF1whole gene deletion n = 32/control group n = 32). Whole-body tumor-volumes were semi-automatically assessed (MedX, V3.42). Tumor volumes and averaged annual growth-rates were compared.Median tumor-burden was significantly higher in the type-1 group (418ml; IQR 77 – 950ml, p = 0.012) but not in the atypical group (356ml;IQR 140–1190ml, p = 0.099) when compared to the controls (49ml; IQR 11–691ml). Averaged annual growth rates were significantly higher in both the type-1 group (14%/year; IQR 45–36%/year, p = 0.004) and atypical group (11%/year; IQR 5–23%/year, p = 0.014) compared to the controls (4%/year; IQR1–8%/year). Averaged annual growth rates were significantly higher in pediatric patients with type-1 deletions (21%/year) compared with adult patients (8%/year, p = 0.014) and also compared with pediatric patients without large deletions of the NF1 gene (3.3%/year, p = 0.0015).NF1 whole gene deletions cause a more severe phenotype of NF1 with higher tumor burden and higher growth-rates compared to NF1 patients without large deletions of the NF1 gene. In particular, pediatric patients with type-1 deletions display a pronounced tumor growth.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号