首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3442篇
  免费   333篇
  2023年   14篇
  2022年   43篇
  2021年   68篇
  2020年   58篇
  2019年   55篇
  2018年   67篇
  2017年   62篇
  2016年   100篇
  2015年   175篇
  2014年   197篇
  2013年   204篇
  2012年   302篇
  2011年   298篇
  2010年   171篇
  2009年   156篇
  2008年   225篇
  2007年   242篇
  2006年   229篇
  2005年   184篇
  2004年   197篇
  2003年   169篇
  2002年   137篇
  2001年   34篇
  2000年   23篇
  1999年   36篇
  1998年   46篇
  1997年   22篇
  1996年   20篇
  1995年   21篇
  1994年   13篇
  1993年   14篇
  1992年   6篇
  1991年   12篇
  1990年   17篇
  1989年   13篇
  1988年   20篇
  1987年   8篇
  1986年   10篇
  1985年   14篇
  1984年   14篇
  1983年   7篇
  1982年   5篇
  1981年   9篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   5篇
  1974年   8篇
  1973年   7篇
  1958年   3篇
排序方式: 共有3775条查询结果,搜索用时 15 毫秒
971.
A single-nucleotide polymorphism (SNP), identified at nucleotide position -844 in the 5' promoter of the FasL gene, lies within a putative binding motif for CAAT/enhancer-binding protein beta (C/EBPbeta). Electrophoretic mobility shift and supershift assays confirmed that this element binds specifically to C/EBPbeta and demonstrated that the two alleles of this element have different affinities for C/EBPbeta. In luciferase reporter assays, the -844C genotype had twice the basal activity of the -844T construct, and basal expression of Fas ligand (FasL) on peripheral blood fibrocytes was also significantly higher in -844C than in -844T homozygous donors. FasL is located on human chromosome 1q23, a region that shows linkage to the systemic lupus autoimmune phenotype. Analysis of 211 African American systemic lupus erythematosus patients revealed enrichment of the -844C homozygous genotype in these systemic lupus erythematosus patients compared with 150 ethnically matched normal controls (p = 0.024). The -844C homozygous genotype may lead to the increased expression of FasL, to altered FasL-mediated signaling in lymphocytes, and to enhanced risk for autoimmunity. This functionally significant SNP demonstrates the potential importance of SNPs in regulatory regions and suggests that differences in the regulation of FasL expression may contribute to the development of the autoimmune phenotype.  相似文献   
972.
Development of anti-Fas Abs to treat diseases with insufficient Fas-mediated apoptosis has been limited by concern about hepatotoxicity. We report here that hepatotoxicity elicited by anti-Fas Ab Jo2 is dependent on FcgammaRIIB. Thus, following Jo2 treatment, all FcgammaRIIB(-/-) mice survived while 80% of wild-type and all FcR-gamma(-/-) mice died from acute liver failure. Microscopic examination suggests that FcgammaRIIB deficiency protects the hepatic sinusoidal endothelium, a cell type that normally coexpresses Fas and FcgammaRIIB. In vitro studies showed that FcgammaRIIB, but not FcgammaRI and FcgammaRIII, on neighboring macrophages substantially enhanced Jo2 mediated apoptosis of Fas expressing target cells. However, FcgammaRI and FcgammaRIII appeared essential for apoptosis-inducing activity of a non-hepatotoxic anti-Fas mAb HFE7A. These findings imply that by interacting with the Fc region of agonistic Abs, FcgammaRs can modulate both the desired and undesired consequences of Ab-based therapy. Recognizing this fact should facilitate development of safer and more efficacious agonistic Abs.  相似文献   
973.
The gene cluster required for paxilline biosynthesis in Penicillium paxilli contains two cytochrome P450 monooxygenase genes, paxP and paxQ. The primary sequences of both proteins are very similar to those of proposed cytochrome P450 monooxygenases from other filamentous fungi, and contain several conserved motifs, including that for a haem-binding site. Alignment of these sequences with mammalian and bacterial P450 enzymes of known 3-D structure predicts that there is also considerable conservation at the level of secondary structure. Deletion of paxP and paxQ results in mutant strains that accumulate paspaline and 13-desoxypaxilline, respectively. These results confirm that paxP and paxQ are essential for paxilline biosynthesis and that paspaline and 13-desoxypaxilline are the most likely substrates for the corresponding enzymes. Chemical complementation of paxilline biosynthesis in paxG (geranygeranyl diphosphate synthase) and paxP, but not paxQ, mutants by the external addition of 13-desoxypaxilline confirms that PaxG and PaxP precede PaxQ, and are functionally part of the same biosynthetic pathway. A pathway for the biosynthesis of paxilline is proposed on the basis of these and earlier results. Electrophysiological experiments demonstrated that 13-desoxypaxilline is a weak inhibitor of mammalian maxi-K channels (Ki=730 nM) compared to paxilline (Ki=30 nM), indicating that the C-13 OH group of paxilline is crucial for the biological activity of this tremorgenic mycotoxin. Paspaline is essentially inactive as a channel blocker, causing only slight inhibition at concentrations up to 1 M.Communicated by E. Cerdà-Olmedo  相似文献   
974.
Since the mid-1990s, there have been tremendous advances in our understanding of the roles that lipid-modifying enzymes play in various intracellular membrane trafficking events. Phospholipases represent the largest group of lipid-modifying enzymes and accordingly display a wide range of functions. The largest class of phospholipases are the phospholipase A(2) (PLA2) enzymes, and these have been most extensively studied for their roles in the generation lipid signaling molecules, e.g. arachidonic acid. In recent years, however, cytoplasmic PLA2 enzymes have also become increasingly associated with various intracellular trafficking events, such as the formation of membrane tubules from the Golgi complex and endosomes, and membrane fusion events in the secretory and endocytic pathways. Moreover, the ability of cytoplasmic PLA2 enzymes to directly affect the structure and function of membranes by altering membrane curvature suggests novel functional roles for these enzymes. This review will focus on the role of cytoplasmic PLA2 enzymes in intracellular membrane trafficking and the mechanisms by which they influence membrane structure and function .  相似文献   
975.
The alveolar fibrinolytic system is altered in acute lung injury (ALI). Levels of the fibrinolytic protease inhibitor, plasminogen activator inhibitor-1 (PAI-1), are too low in bronchoalveolar lavage to address its prognostic significance. This study was performed to assess whether PAI-1 antigen in undiluted pulmonary edema fluid levels can identify patients with ALI and predict their outcome. PAI-1 antigen levels in both plasma and edema fluid were higher in ALI compared with hydrostatic edema, and edema fluid PAI-1 values identified those with ALI with high sensitivity and specificity. Both the high plasma and edema fluid PAI-1 antigen values were associated with a higher mortality rate and fewer days of unassisted ventilation in patients with ALI. Differences in PAI-1 activity were concordant with levels of PAI-1 antigen. Although the fibrin-derived alveolar D-dimer levels were strikingly similar in both groups, ALI patients had a higher relative proportion of D-monomer. In conclusion, PAI-1 levels in edema fluid and plasma identify those with ALI that have a poor prognosis. The data indicate that fibrin turnover in early ALI is a consequence of a rapid fibrinogen influx and fractional fibrinolytic inhibition.  相似文献   
976.
Amphioxus (Branchiostoma floridae) cholinesterase 2 (ChE2) hydrolyzes acetylthiocholine (AsCh) almost exclusively. We constructed a homology model of ChE2 on the basis of Torpedo californica acetylcholinesterase (AChE) and found that the acyl pocket of the enzyme resembles that of Drosophila melanogaster AChE, which is proposed to be comprised of Phe330 (Phe290 in T. californica AChE) and Phe440 (Val400), rather than Leu328 (Phe288) and Phe330 (Phe290), as in vertebrate AChE. In ChE2, the homologous amino acids are Phe312 (Phe290) and Phe422 (Val400). To determine if these amino acids define the acyl pocket of ChE2 and its substrate specificity, and to obtain information about the hydrophobic subsite, partially comprised of Tyr352 (Phe330) and Phe353 (Phe331), we performed site-directed mutagenesis and in vitro expression. The aliphatic substitution mutant F312I ChE2 hydrolyzes AsCh preferentially but also butyrylthiocholine (BsCh), and the change in substrate specificity is due primarily to an increase in kcat for BsCh; Km and Kss are also altered. F422L and F422V produce enzymes that hydrolyze BsCh and AsCh equally due to an increase in kcat for BsCh and a decrease in kcat for AsCh. Our data suggest that Phe312 and Phe422 define the acyl pocket. We also screened mutants for changes in sensitivity to various inhibitors. Y352A increases the sensitivity of ChE2 to the bulky inhibitor ethopropazine. Y352A decreases inhibition by BW284c51, consistent with its role as part of the choline-binding site. Aliphatic replacement mutations produce enzymes that are more sensitive to inhibition by iso-OMPA, presumably by increasing access to the active site serine. Y352A, F353A and F353V make ChE2 considerably more resistant to inhibition by eserine and neostigmine, suggesting that binding of these aromatic inhibitors is mediated by π–π or cation–π interactions at the hydrophobic site. Our results also provide information about the aromatic trapping of the active site histidine and the inactivation of ChE2 by sulfhydryl reagents.  相似文献   
977.
Several hyperthermophilic organisms contain an unusual phosphatase that has dual activity toward inositol monophosphates and fructose 1,6-bisphosphate. The structure of the second member of this family, an FBPase/IMPase from Archaeoglobus fulgidus (AF2372), has been solved. This enzyme shares many kinetic and structural similarities with that of a previously solved enzyme from Methanococcus jannaschii (MJ0109). It also shows some kinetic differences in divalent metal ion binding as well as structural variations at the dimer interface that correlate with decreased thermal stability. The availability of different crystal forms allowed us to investigate the effect of the presence of ligands on the conformation of a mobile catalytic loop independently of the crystal packing. This conformational variability in AF2372 is compared with that observed in other members of this structural family that are sensitive or insensitive to submillimolar concentrations of Li(+). This analysis provides support for the previously proposed mechanism of catalysis involving three metal ions. A direct correlation of the loop conformation with strength of Li(+) inhibition provides a useful system of classification for this extended family of enzymes.  相似文献   
978.
979.
To determine the contribution of the previously identified internalins, InlA, InlB, InlC, InlE, InlG, and InlH, to internalization of Listeria monocytogenes by non-professional phagocytic mammalian cells, we constructed mutants with various combinations of deletions in the respective inl genes. Internalization of these mutants into the epithelial-like Caco-2 and the microvascular endothelial HBMEC cell lines were studied. Deletion of the inlGHE gene cluster, or of the single genes, led to a two to fourfold increased internalization by HBMEC and other non-phagocytic mammalian cells. Invasion into HBMEC was totally blocked in the absence of InlB, and InlB-dependent internalization did not require the presence of any of the other internalins. Internalization by Caco-2 cells was reduced to a level of about 1% in the absence of InlA and InlB, and was most efficient in the presence of InlA, InlB and InlC and in the absence of InlG, InlH and InlE. InlB and InlA, in each case in the absence of the other internalins, led (compared with the wild-type strain) to reduced internalization of about 20% and less than 10% respectively. InlA-dependent internalization (in the absence of InlB) required the additional function of InlC and InlGHE. The deletion of inlGHE enhanced the expression of InlA and InlB. The increased amount of InlA led to an increase in early association of L. monocytogenes with Caco-2 cells without enhancing its uptake in the absence of the other internalins, whereas the larger amount of InlB did not enhance early association of L. monocytogenes with HBMEC but led to an increase in internalization of L. monocytogenes. The results suggest that InlB is able to induce phagocytosis in HBMEC and (at a lower efficiency) in Caco-2 cells by itself, but InlA needs the supportive functions of the other internalins to trigger phagocytosis. None of these internalins seems to be required for cell-to-cell spread by L. monocytogenes, as shown by microinjection of Caco-2 cells with appropriate inl mutants.  相似文献   
980.
An iron delivery pathway mediated by a lipocalin   总被引:19,自引:0,他引:19  
Despite the critical need for iron in many cellular reactions, deletion of the transferrin pathway does not block organogenesis, suggesting the presence of alternative methods to deliver iron. We show that a member of the lipocalin superfamily (24p3/Ngal) delivers iron to the cytoplasm where it activates or represses iron-responsive genes. Iron unloading depends on the cycling of 24p3/Ngal through acidic endosomes, but its pH sensitivity and its subcellular targeting differed from transferrin. Indeed, during the conversion of mesenchyme into epithelia (where we discovered the protein), 24p3/Ngal and transferrin were endocytosed by different cells that characterize different stages of development, and they triggered unique responses. These studies identify an iron delivery pathway active in development and cell physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号