首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   41篇
  国内免费   2篇
  560篇
  2019年   8篇
  2017年   7篇
  2016年   8篇
  2015年   14篇
  2014年   6篇
  2013年   13篇
  2012年   10篇
  2011年   13篇
  2010年   10篇
  2009年   11篇
  2008年   17篇
  2007年   13篇
  2006年   13篇
  2005年   18篇
  2004年   23篇
  2003年   13篇
  2002年   21篇
  2001年   28篇
  2000年   25篇
  1999年   15篇
  1998年   9篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   10篇
  1991年   5篇
  1989年   6篇
  1988年   9篇
  1987年   10篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   8篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   11篇
  1978年   7篇
  1977年   14篇
  1976年   10篇
  1975年   9篇
  1974年   10篇
  1972年   5篇
  1971年   8篇
  1970年   5篇
  1969年   4篇
  1967年   7篇
  1962年   5篇
排序方式: 共有560条查询结果,搜索用时 0 毫秒
61.
62.
Childhood ataxia with central nervous system hypomyelination (CACH), also called vanishing white matter (VWM) leukoencephalopathy, is a fatal genetic disease caused by mutations in eukaryotic initiation factor 2B (eIF2B) genes. The five subunits eIF2B factor is critical for translation initiation under normal conditions and regulates protein synthesis in response to cellular stresses. Primary fibroblasts from CACH/VWM patients and normal individuals were used to measure basal eIF2B activity as well as global protein synthesis and ATF4 induction in response to stress in the endoplasmic reticulum. We show that although the cells expressing mutant eIF2B genes respond normally to stress conditions by reduced global translation rates, they exhibit significantly greater increase in ATF4 induction compared to normal controls despite equal levels of stress and activity of the upstream eIF2α kinase. This heightened stress response observed in primary fibroblasts that suffer from minor loss of basal eIF2B activity may be employed as an initial screening tool for CACH/VWM leukodystrophy.  相似文献   
63.
Oil of mustard (OM) is a potent neuronal activator that promotes allodynia and hyperalgesia within minutes of application. In this study, OM was used to induce an acute colitis. We also investigated whether intracolonic OM-induced inflammation alters gastrointestinal (GI) function over a longer time frame as a model of postinflammatory irritable bowel syndrome (PI-IBS). Mice given a single administration of 0.5% OM developed a severe colitis that peaked at day 3, was reduced at day 7, and was absent by day 14. At the peak response, there was body weight loss, colon shrinkage, thickening and weight increases, distension of the proximal colon, and diarrhea. Macroscopic inspection of the distal colon revealed a discontinuous pattern of inflammatory damage and occasional transmural ulceration. Histological examination showed loss of epithelium, an inflammatory infiltrate, destruction of mucosal architecture, edema, and loss of circular smooth muscle architecture. OM administration increased transit of a carmine dye bolus from 58% of the total length of the upper GI tract in untreated age-matched controls to as high as 74% when tested at day 28 post-OM. Mice in the latter group demonstrated a significantly more sensitive response to inhibition of upper GI transit by the mu-opioid receptor agonist loperamide compared with normal mice. OM induces a rapid, acute, and transient colitis and, in the longer term, functional changes in motility that are observed when there is no gross inflammation and thereby is a model of functional bowel disorders that mimic aspects of PI-IBS in humans.  相似文献   
64.
65.
The purpose of this study was to examine the role of the ribosomal protein S6 protein kinase (p70S6K), a protein synthesis regulator, in promoting retinal neuronal cell survival. Differentiated R28 rat retinal neuronal cells were used as an experimental model. Cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% newborn calf serum, and during the period of experimentation were exposed either to the absence or presence of 10 nm insulin. Insulin treatment induced p70S6K, mTOR, and Akt phosphorylation, effects that were completely prevented by the PI3K inhibitor, LY294002. Insulin-induced phosphorylation of p70S6K and mTOR was prevented by the mTOR inhibitor, rapamycin. Apoptosis, induced by serum deprivation and evaluated by Hoechst staining, was inhibited by insulin treatment in R28 cells, but not in L6 muscle cells. This effect of insulin was also largely prevented by rapamycin. Inhibition of p70S6K activity by exogenous expression of a dominant negative mutant of p70S6K prevented insulin-induced cell survival, whereas, overexpression of wild type p70S6K or expression of a rapamycin resistant form of the kinase enhanced the effect of insulin on survival. Enhanced cell survival under the latter condition was accompanied by increased p70S6K activity and phosphorylation. Rapamycin did not inhibit insulin induced p70S6K phosphorylation and activity in cells transfected with the rapamycin-resistant mutant. Together, these results suggest that p70S6K plays a key role in insulin stimulated retinal neuronal cell survival.  相似文献   
66.
Protein expression in the heart is altered following periods of myocardial ischemia. The changes in protein expression are associated with increased cell size that can be maladaptive. There is little information regarding the regulation of protein expression through the process of mRNA translation during ischemia and reperfusion in the heart. Therefore, the purpose of this study was to identify changes in signaling pathways and downstream regulatory mechanisms of mRNA translation in an in vivo model of myocardial ischemia and reperfusion. Hearts were collected from rats whose left main coronary arteries had either been occluded for 25 min or reversibly occluded for 25 min and subsequently reperfused for 15 min. Following reperfusion, both the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways were activated, as evidenced by increased phosphorylation of Akt (PKB), extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase. Activation of Akt stimulated signaling through the protein kinase mammalian target of rapamycin, as evidenced by increased phosphorylation of two of its effectors, the ribosomal protein S6 kinase and the eukaryotic initiation factor eIF4E binding protein 1. Ischemia and reperfusion also resulted in increased phosphorylation of eIF2 and eIF2B. These changes in protein phosphorylation suggest that control of mRNA translation following ischemia and reperfusion is modulated through a number of signaling pathways and regulatory mechanisms.  相似文献   
67.
Activation of Toll-like receptors (TLRs) induces the endoplasmic reticulum (ER) unfolded protein response (UPR) to accommodate essential protein translation. However, despite increased levels of phosphorylated eIF2α (p-eIF2α), a TLR-TRIF-dependent pathway assures that the cells avoid CHOP induction, apoptosis and translational suppression of critical proteins. As p-eIF2α decreases the functional interaction of eIF2 with eIF2B, a guanine nucleotide exchange factor (GEF), we explored the hypothesis that TLR-TRIF signalling activates eIF2B GEF activity to counteract the effects of p-eIF2α. We now show that TLR-TRIF signalling activates eIF2B GEF through PP2A-mediated serine dephosphorylation of the eIF2B ?-subunit. PP2A itself is activated by decreased Src-family-kinase-induced tyrosine phosphorylation of its catalytic subunit. Each of these processes is required for TLR-TRIF-mediated CHOP suppression in ER-stressed cells in vitro and in vivo. Thus, in the setting of prolonged, physiologic ER stress, a unique TLR-TRIF-dependent translational control pathway enables cells to carry out essential protein synthesis and avoid CHOP-induced apoptosis while still benefiting from the protective arms of the UPR.  相似文献   
68.
The influence of seed dispersers on the evolution of fruit traits remains controversial, largely because most studies have failed to account for phylogeny and or have focused on conservative taxonomic levels. Under the hypothesis that fruit traits have evolved in response to different sets of selective pressures by disparate types of seed dispersers (the dispersal syndromes hypothesis), we test for two dispersal syndromes, defined as groups of fruit traits that appear together more often than expected by chance. (1) Bird syndrome fruits are brightly colored and small, because birds have acute color vision, and commonly swallow fruits whole. (2) Mammal syndrome fruits are dull-colored and larger on average than bird syndrome fruits, because mammals do not rely heavily on visual cues for finding fruits, and can eat fruits piecemeal. If, instead, phylogenetic inertia determines the co-occurrence of fruit size and color, we will observe that specific combinations of size and color evolved in a small number of ancestral species. We performed a comparative analysis of fruit traits for 64 species of Ficus (Moraceae), based on a phylogeny we constructed using nuclear ribosomal DNA. Using a concentrated changes test and assuming fruit color is an independent variable, we found that small-sized fruits evolve on branches with red and purple figs, as predicted by the dispersal syndromes hypothesis. When using diameter as the independent variable, results vary with the combination of algorithms used, which is discussed in detail. A likelihood ratio test confirms the pattern found with the concentrated changes test using color as the independent variable. These results support the dispersal syndromes hypothesis.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号