首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50833篇
  免费   3719篇
  国内免费   21篇
  54573篇
  2024年   52篇
  2023年   186篇
  2022年   598篇
  2021年   970篇
  2020年   602篇
  2019年   738篇
  2018年   1117篇
  2017年   974篇
  2016年   1592篇
  2015年   2479篇
  2014年   2851篇
  2013年   3219篇
  2012年   4228篇
  2011年   4035篇
  2010年   2585篇
  2009年   2332篇
  2008年   3244篇
  2007年   3116篇
  2006年   2746篇
  2005年   2524篇
  2004年   2325篇
  2003年   2023篇
  2002年   1739篇
  2001年   1377篇
  2000年   1297篇
  1999年   1034篇
  1998年   423篇
  1997年   370篇
  1996年   268篇
  1995年   229篇
  1994年   226篇
  1993年   181篇
  1992年   357篇
  1991年   321篇
  1990年   289篇
  1989年   246篇
  1988年   197篇
  1987年   178篇
  1986年   148篇
  1985年   120篇
  1984年   91篇
  1983年   96篇
  1982年   74篇
  1981年   67篇
  1980年   63篇
  1979年   79篇
  1978年   58篇
  1977年   55篇
  1974年   67篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Pseudomonas putida E41 was isolated from oil-contaminated soil and showed its ability to grow on ethyl-benzene as the sole carbon and energy source. Moreover, P. putida E41 show the activity of biodegradation of ethylbenzene in the batch culture. E41 showed high efficiency of biodegradation of ethylbenzene with the optimum conditions (a cell concentration of 0.1 g wet cell weight/L, pH 7.0, 25°C, and ethylbenzene concentration of 50 mg/L) from the results of the batch culture. The maximum degradation rate and specific growth rate (μmax) under the optimum conditions were 0.19+0.03 mg/mg-DCW (Dry Cell Weight)/h and 0.87+0.13 h−1, respectively. Benzene, toluene and ethylbenzene were degraded when these compounds were provided together; however, xylene isomers persisted during degradation by P. putida E41. When using a bioreactor batch system with a binary culture with P. putida BJ10, which was isolated previously in our lab, the degradation rate for benzene and toluene was improved in BTE mixed medium (each initial concentration: 50 mg/L). Almost all of the BTE was degraded within 4 h and 70–80% of m-, p-, and o-xylenes within 11 h in a BTEX mixture (initial concentration: 50 mg/L each). In summary, we found a valuable new strain of P. putida, determined the optimal degradation conditions for this isolate and tested a mixed culture of E41 and BJ10 for its ability to degrade a common sample of mixed contaminants containing benzene, toluene, and xylene.  相似文献   
992.
Hizikia fusiforme is a commonly used food that possesses potent anti-bacterial, anti-fungal, and anti-inflammatory activities. The immunostimulatory activities of aqueous extract of Hizikia fusiforme (HFAE) in RAW 264.7 macrophages and whole spleen cells were investigated. HFAE activated RAW 264.7 macrophages to produce cytokines such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in a dose-dependent manner. In addition, HFAE induced the mRNA expression of TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophages. Moreover, HFAE stimulated proliferation of whole spleen cells and reference mitogen. Taken together, the results demonstrate that HFAE potently activates the immune function by regulating NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophage and promoting spleen cell proliferation.  相似文献   
993.
Saccharomyces cerevisiae strains tolerant to ethanol and heat stresses are important for industrial ethanol production. In this study, five strains (Tn 1–5) tolerant to up to 15% ethanol were isolated by screening a transposon-mediated mutant library. Two of them displayed tolerance to heat (42 °C). The determination of transposon insertion sites and Northern blot analysis identified seven putative genes (CMP2, IMD4, SSK2, PPG1, DLD3, PAM1, and MSN2) and revealed simultaneous down-regulations of CMP2 and IMD4, and SSK2 and PPG1, down-regulation of DLD3, and disruptions of the open reading frame of PAM1 and MSN2, indicating that ethanol and/or heat tolerance can be conferred. Knockout mutants of these seven individual genes were ethanol tolerant and three of them (SSK2, PPG1, and PAM1) were tolerant to heat. Such tolerant phenotypes reverted to sensitive phenotypes by the autologous or overexpression of each gene. Five transposon mutants showed higher ethanol production and grew faster than the control strain when cultured in rich media containing 30% glucose and initial 6% ethanol at 30 °C. Of those, two thermotolerant transposon mutants (Tn 2 and Tn 3) exhibited significantly enhanced growth and ethanol production compared to the control at 42 °C. The genes identified in this study may provide a basis for the application in developing industrial yeast strains.  相似文献   
994.
995.
Glycoside hydrolase family 4 (GH4) represents an unusual group of glucosidases with a requirement for NAD(+), Mn(2+), and reducing conditions. We found a putative α-glucosidase belonging to GH4 in hyperthermophilic Gram-negative bacterium Thermotoga neapolitana. In this study, we recombinantly expressed the putative α-glycosidase from T. neapolitana, and determined the crystal structure of the protein at a resolution of 2.0? in the presence of Mn(2+) but in the absence of NAD(+). The structure showed the dimeric assembly and the Mn(2+) coordination that other GH4 enzymes share. In comparison, we observed structural changes in T. neapolitana α-glucosidase by the binding of NAD(+), which also increased the thermostability. Numerous arginine-mediated salt-bridges were observed in the structure, and we confirmed that the salt bridges correlated with the thermostability of the proteins. Disruption of the salt bridge that linked N-terminal and C-terminal parts at the surface dramatically decreased the thermostability. A mutation that changed the internal salt bridge to a hydrogen bond also decreased the thermostability of the protein. This study will help us to understand the function of the putative glucosidase and the structural features that affect the thermostability of the protein.  相似文献   
996.
Being different from anti-phosphotyrosine antibodies, anti-phosphoserine- or anti-phosphothreonine-specific antibodies with high affinity for the detection of serine/threonine kinase substrates are not readily available. Therefore, chemical modification methods were developed for the detection of phosphoserine or threonine in the screening of protein kinase substrates based on β-elimination and Michael addition. We have developed a biotin-based detection probe for identification of the phosphorylated serine or threonine residue. A biotin derivative induced a color reaction using alkaline phosphate-conjugated streptavidin that amplified the signal. It was effective for the detection and separation of the target peptide on the resin. The detection probe was successfully used in identifying PKA substrates from peptide libraries on resin beads. The peptide library was prepared as a ladder-type, such that the active peptides on the colored resin beads were readily sequenced with the truncated peptide fragments by MALDI-TOF/MS analysis after releasing the peptides from the resin bead through photolysis.  相似文献   
997.
998.
The gene encoding a type I pullulanase from the hyperthermophilic anaerobic bacterium Thermotoga neapolitana (pulA) was cloned in Escherichia coli and sequenced. The pulA gene from T. neapolitana showed 91.5% pairwise amino acid identity with pulA from Thermotoga maritima and contained the four regions conserved in all amylolytic enzymes. pulA encodes a protein of 843 amino acids with a 19-residue signal peptide. The pulA gene was subcloned and overexpressed in E. coli under the control of the T7 promoter. The purified recombinant enzyme (rPulA) produced a 93-kDa protein with pullulanase activity. rPulA was optimally active at pH 5-7 and 80°C and had a half-life of 88 min at 80°C. rPulA hydrolyzed pullulan, producing maltotriose, and hydrolytic activities were also detected with amylopectin, starch, and glycogen, but not with amylose. This substrate specificity is typical of a type I pullulanase. Thin layer chromatography of the reaction products in the reaction with pullulan and aesculin showed that the enzyme had transglycosylation activity. Analysis of the transfer product using NMR and isoamylase treatment revealed it to be α-maltotriosyl-(1,6)-aesculin, suggesting that the enzyme transferred the maltotriosyl residue of pullulan to aesculin by forming α-1,6-glucosidic linkages. Our findings suggest that the pullulanase from T. neapolitana is the first thermostable type I pullulanase which has α-1,6-transferring activity.  相似文献   
999.
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.  相似文献   
1000.
Human sparganosis is a zoonotic disease caused by infection with larval forms (procercoid/plerocercoid) of Spirometra spp. The purpose of this study was to identify Spirometra spp. of infected snakes using a multiplex PCR assay and phylogenetic analysis of mitochondrial DNA sequence data from the spargana of terrestrial snakes obtained from Korea and China. A total of 283 snakes were obtained that included 4 species of Colubridae comprising Rhabdophis tigrinus tigrinus (n=150), Dinodon rufozonatum rufozonatum (n=64), Elaphe davidi (n=2), and Elaphe schrenkii (n=7), and 1 species of Viperidae, Agkistrodon saxatilis (n=60). The snakes were collected from the provinces of Chungbuk, Chungnam, and Gyeongbuk in Korea (n=161), and from China (n=122). The overall infection rate with spargana was 83% (235/283). The highest was recorded for D. rufozonatum rufozonatum (100%), followed by A. saxatilis (85%) and R. tigrinus tigrinus (80%), with a negative result for E. davidi (0%) and E. schrenkii (0%). The sequence identities between the spargana from snakes (n=50) and Spirometra erinaceieuropaei (KJ599680) or S. decipiens (KJ599679) control specimens were 90.8% and 99.2%, respectively. Pairwise genetic distances between spargana (n=50) and S. decipiens ranged from 0.0080 to 0.0107, while those between spargana and S. erinaceieuropaei ranged from 0.1070 to 0.1096. In this study, all of the 904 spargana analyzed were identified as S. decipiens either by a multiplex PCR assay (n=854) or mitochondrial cox1 sequence analysis (n=50).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号